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The Möbius function

µ(n) :=

(−1)k if n is the product of k distinct
primes (k ≥ 0),

0 otherwise.

The Möbius function µ is multiplicative:

µ(n1n2) = µ(n1)µ(n2)

whenever gcd(n1, n2) = 1.



Sarnak’s conjecture (2010)
For any topological dynamical system (X,T ) with
htop(X,T ) = 0,
for any f : X → C continuous,
for any x ∈ X,

1

N

∑
1≤n≤N

f(T nx)µ(n) −−−→
N→∞

0.



Measurable dynamics point of view

Assume that (X,T ) is uniquely ergodic, with a
unique invariant probability measure m.

Which properties of the measure preserving system
(X,m, T ) imply the validity of Sarnak’s conjecture
for (X,T )?

Spectral properties
Which properties of the Koopman operator
UT : f 7→ f ◦ T on L2(m) imply the validity of
Sarnak’s conjecture for (X,T )?
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Main tool: KBSZ criterion

Lemma (Katai, Bourgain-Sarnak-Ziegler)
Assume that (an) is a bounded sequence of complex
numbers, such that

lim sup
p,q→∞

different primes

(
lim sup
N→∞

∣∣∣∣∣ 1N ∑
n≤N

apnaqn

∣∣∣∣∣
)

= 0.

Then, for any bounded multiplicative function ν, we
have

1

N

∑
n≤N

an ν(n) −−−→
N→∞

0.



Application to Sarnak’s conjecture

For an = f(T nx): find sufficient conditions to have

lim sup
p,q→∞

different primes

(
lim sup
N→∞

∣∣∣∣∣ 1N ∑
n≤N

f
(
(T p)nx

)
f
(
(T q)nx

)∣∣∣∣∣
)

= 0.

−→ For µ, we can assume that
∫
X f dm = 0

Indeed, 1
N

∑
n≤N µ(n) −−−→

N→∞
0.

−→ Correlation of orbits of T p with orbits of T q, for
p, q different large primes.
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Joinings and disjointness
Any limit of 1

Nk

∑
n≤Nk

f
(
(T p)nx

)
f
(
(T q)nx

)
is of

the form ∫
X×X

f(x1)f(x2) dκ(x1, x2),

where κ is a joining of T p and T q,

i.e. a (T p × T q)-invariant probability measure on
X ×X with marginals m.

J(T p, T q) := {joinings of T p and T q}
Je(T

p, T q) := {ergodic joinings of T p and T q}

T p and T q are disjoint if J(T p, T q) = {m⊗m}
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Disjointness of prime powers

Theorem (Bourgain, Sarnak, Ziegler)
If for p, q different primes T p and T q are disjoint,
then Sarnak’s conjecture holds for (X,T ).



Spectral disjointness

f ∈ L2
0(m). The spectral measure of f associated

to the transformation T p is the finite measure on
the circle defined by

σ̂f,T p(j) := 〈f, U j
T pf〉L2(m)

T p and T q are spectrally disjoint if for each
f, g ∈ L2

0(m), σf,T p ⊥⊥σg,T q .

Lemma
Spectral disjointness implies disjointness.



Spectral disjointness implies disjointness
let κ be a joining of T p and T q, and A,B ⊂ X

in (X ×X,T p × T q, κ), set

F (x1, x2) := 1A(x1)−m(A),

G(x1, x2) := 1B(x2)−m(B).

Then

σF,(T p×T q) = σ1A−m(A),T p

⊥⊥
σG,(T p×T q) = σ1B−m(B),T q .

Hence F ⊥ G in L2(κ),
and κ(A×B) = m(A)m(B).
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Corollary
If for p, q different primes T p and T q are spectrally
disjoint, then Sarnak’s conjecture holds for (X,T ).

−→ conditions for spectral disjointness of different
prime powers?



Weak limits of powers (Ex. of Chacon)
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n→∞

1

2
(Id+UT )
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U−2hnT
w−−−→

n→∞

1

6
(Id+4UT + U 2

T )



1/6 of T−2hnB is in B, 1/6 is in T 2B, 4/6 is in TB.

U−2hnT
w−−−→

n→∞

1

6
(Id+4UT + U 2

T )

In general,

U−khnT = U−hn
T k

w−−−→
n→∞

Pk(UT )



Spectral disjointness of T and T 2

If T and T 2 were not spectrally disjoint,
we could find

I H1 ⊂ L2(X,m), stable by UT
I H2 ⊂ L2(X,m), stable by UT 2

and by UT

I a continuous measure σ on S1

such that (H1, UT ) ≈ (H2, UT 2) ≈
(
L2(S1, σ),×z

)
.
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2
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1 + 4φ(z) + φ2(z)

6
(σ-a.e.)

Impossible!
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Spectral disjointness of powers

I For Chacon transformation, T p and T q are
spectrally disjoint whenever 1 ≤ p < q.

I This result extends to a large class of rank-one
transormations, including all weakly mixing
constructions with bounded parameters and
non-flat towers.



Spectral disjointness of powers

I For Chacon transformation, T p and T q are
spectrally disjoint whenever 1 ≤ p < q.

I This result extends to a large class of rank-one
transormations, including all weakly mixing
constructions with bounded parameters and
non-flat towers.





Applying KBSZ without disjointness?

No hope to apply the method to non weakly-mixing
systems:

If UT has an eigenvalue α 6= 1,

I T p and T q share a common eigenvalue αpq,

I T p and T q are never disjoint.
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AOP Property

By KBSZ criterion, any uniquely ergodic model of a
system with AOP satisfies Sarnak’s conjecture.
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AOP for (quasi-)discrete spectrum

Theorem
If (X,m, T ) has discrete spectrum and is totally
ergodic, then it has AOP.

−→ includes examples where all powers are
isomorphic.

−→ extends to quasi-discrete spectrum systems,
e.g.

T : (x1, . . . , xd) ∈ Td 7−→ (x1+α, x2+x1, . . . , xd+xd−1).
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Proof of AOP for discrete spectrum
∀f, g ∈ L2

0(m),

lim
p,q→∞,

p,q different primes

sup
κ∈Je(T p,T q)

∣∣∣∣∫
X×X

f ⊗ g dκ
∣∣∣∣ = 0 ?

Enough to consider f and g eigenfunctions
associated to irrational eigenvalues α and β ∈ S1.
For κ ∈ Je(T p, T q), in (X ×X,T p × T q, κ)
I f ⊗ 1 is an eigenfunction associated to αp

I 1⊗ g is an eigenfunction associated to βq

I if αp 6= βq, then f ⊗ 1 ⊥ 1⊗ g
But for α and β irrational eigenvalues, there exists
at most one pair (p, q) such that αp = βq. �
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Sarnak for discrete spectrum systems

Theorem (Huang, Wang, Zhang (2016))
Let (X,T ) be a uniquely ergodic system with
unique invariant measure m. If (X,m, T ) has
discrete spectrum, then Sarnak’s conjecture holds
for (X,T ).

(even when there exist rational eigenvalues)



Sarnak for discrete spectrum systems

An essential argument in the proof: an estimation
by Matomäki, Radziwill and Tao

sup
α∈S1

1

N

∑
0≤n<N

∣∣∣∣∣ 1L ∑
0≤`<L

µ(n+ `)αn+`

∣∣∣∣∣
−→ 0 as N,L→∞, L ≤ N.


