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IRIF-CNRS-Paris-France
http://www.irif.univ-paris-diderot.fr/˜berthe

Dyadisc2-Amiens 2018



Balance on factors

Let (X ,T ) be a minimal subshift

Let LX ⊂ A∗ be its language (set of factors)

Let |x |v stands for the number of occurrences of the finite
word v in the finite word x

The minimal subshift (X ,T ) is balanced on v ∈ LX if there exists
C > 0 such that for any pair (x , y) of factors of the same length in
LX

||x |v − |y |v | ≤ C

It is balanced on factors if it is balanced on all v ∈ LX



Frequencies and symbolic discrepancy
Let u be an infinite word in AN

The frequency µv of a finite word v ∈ A∗ is defined as

µv = lim
n→+∞

|u0 · · · uN−1|v
N

One has uniform frequency for v if the convergence of

|uk · · · uk+N−1|v
N

toward µv is uniform in k when N tends to infinity

Symbolic discrepancy

∆u(v ,N) = ||u0u1 . . . uN−1|v − N · µv |

∆X (v ,N) = sup
w∈LX , |w |=N

||w |v − N · µv |

The minimal subshift (X ,T ) has uniform frequency for v if
∆X (v ,N) is in o(N)

Example Let Xσ be the Fibonacci shift generated by σ : 0 7→ 01,
1 7→ 0. For any v , ∆Xσ(v ,N) is bounded. Xσ is balanced.
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Balance and equidistribution

The minimal subshift (X ,T ) is balanced on the factor v iff there
exist C > 0 and µv such that for any factor w ∈ LX

||w |v − µv |w || ≤ C

; uniform frequency for v ; unique ergodicity ,

Proof
Assume that there exist C > 0 and µv such that
||w |v − µv |w || ≤ C for every factor w ∈ LX
For every pair of factors w1 and w2 with the same length n

||w1|v − |w2|v | ≤ ||w1|v − nµv |+ ||w2|v − nµv | ≤ 2C

Hence X is 2C -balanced on v
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Balancedness implies the existence of uniform letter frequencies

Proof Assume that X is C -balanced on v

Let Np be such that for every factor of length p of X , the number
of occurrences of v belongs to the set

{Np,N + 1, · · · ,Np + C}

The sequence (Np/p)p∈N is a Cauchy sequence. Indeed consider a
factor w of length pq

pNq ≤ |w |v ≤ pNq + pC , qNp ≤ |w |v ≤ qNp + qC

−C/p ≤ Np/p − Nq/q ≤ C/q

Let µv = limNq/q

−C ≤ Np − pµv ≤ 0 (q →∞)

Then, for any factor w

||w |v − µv |w || ≤ C
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Balancedness and coboundaries
(X ,T ) is balanced on v iff the ergodic sums for fv = 1[v ] − µv are
bounded

N−1∑
n=0

fv (T n(u)) = |u0 · · · uN+|v |−1|v − µvN

f is a coboundary iff its ergodic sums are bounded

Theorem [Gottschalk-Hedlund] Let X be a compact metric space
and T : X → X be a minimal homeomorphism. Let f : X → R be
a continuous function. Then f is a coboundary

f = g − g ◦ T
for a continuous function g if and only if there exists x and there
exists C > 0 such that for all N

|
N∑

n=0

f (T n(x))| < C

(X ,T ) is balanced on v iff fv = 1[v ] − µv is a coboundary
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Balancedness and topological eigenvalues

(X ,T ) is balanced on v iff fv = 1[v ] − µv is a coboundary

Take f = 1[v ] − µv ; f = g − g ◦ T

exp2iπg◦T = exp2iπµv exp2iπg

exp2iπg is a continuous eigenfunction associated with the
eigenvalue exp2iπµv ; Topological rotation factor

If (X ,T ) is balanced on v , then µv is an additive topological
eigenvalue



Outline

Balancedness: from letters to factors

Topological vs. measure-theoretical eigenvalues

Balancedness for S-adic words

Pisot case

Dendric subshifts (cf Paulina’s lecture)



Two-letter factor substitution

Given a substitution σ, consider the finite set L2(Xσ) as an
alphabet and define the two-letter factor substitution σ2 on
L2(Xσ) as follows

for every u = ab ∈ L2(Xσ), σ2(u) is the word over L2(Xσ) made
of the first |σ(a)| factors of length 2 in σ(u)

For instance, if ab ∈ L2(X ) with σ(a) = a0 · · · ar , σ(b) = b0 · · · bs ,
then

σ2(ab) = (a0a1)(a1a2) · · · (ar−1ar )(arb0)

If the substitution σ is primitive, then σ2 is also primitive, and
σ2 has the same Perron–Frobenius eigenvalue as σ

Frequencies of factors are provided by the renormalized
Perron–Frobenius eigenvector of Mσ2

[Queffélec]



Balancedness and substitutions
Let σ be a primitive substitution.
Theorem [Adamczewski]

If σ (resp. σ2) is a Pisot substitution, then the subshift Xσ is
balanced on letters (resp. on factors).

Conversely, if Xσ is balanced on letters (resp. on factors),
then the Perron–Frobenius eigenvalue of Mσ (resp. Mσ2) is
the unique eigenvalue of Mσ (resp. Mσ2) that is larger than 1
in modulus, and all possible eigenvalues of modulus one of Mσ

(resp. Mσ2) are roots of unity.

Example [Cassaigne-Pytheas Fogg-Minervino]
σ : 1 7→ 121, 2 7→ 32, 3 7→ 321. The eigenvalues of its substitution

matrix are {1, 3±
√
5

2 } and it is balanced on factors.

Proof Consider the Sturmian substitution τ : 3 7→ 30, 0 7→ 300.
The subshift (Xσ,T ) is deduced from the Sturmian shift (Xτ ,T )
by applying the substitution ϕ : 0 7→ 21, 3 7→ 3, which preserves
balancedness.
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Balancedness: letters vs. factors

Consider the Thue–Morse substitution σ : 0 7→ 01, 1 7→ 10

One has L2(σ) = {00, 01, 10, 11}
One has σ(00) = 0101 and σ2(00) = (01)(10)

One checks that σ(2)(a) 7→ bc, b 7→ bd , c 7→ ca, d 7→ cb,
by setting a = 00, b = 01, c = 10, d = 11

The eigenvalues of Mσ are 2 and 0, and the eigenvalues of
Mσ2 are 0, 1, −1 and 2.

The subshift (Xσ,T ) is balanced on letters but it is
unbalanced on any factor of length `, with ` ≥ 2



How to detect imbalances for rational frequencies

KR towers Pn = {T jσn([ab]) : ab ∈ L2(X ), 0 ≤ j < |σn(a)|}
If f ∈ C (X ,Z) is a coboundary, then it is the coboundary of
some h ∈ C (X ,Z) ; locally constant

⊆ [0101]

⊆ [101]

[0110]

[110]

[1001]

[001]

⊆ [1010]

⊆ [010]

00 01 10 11

T



How to detect imbalances for rational frequencies

KR towers Pn = {T jσn([ab]) : ab ∈ L2(X ), 0 ≤ j < |σn(a)|}
If f ∈ C (X ,Z) is a coboundary, then it is the coboundary of
some h ∈ C (X ,Z) ; locally constant

Let f ∈ C (Xσ,Z) and let φn ∈ RL2(Xσ)

φn(ab) =

|σn(a)|−1∑
j=0

f |T jσn([ab]) ∀ab ∈ L2(Xσ)

If f is a coboundary, then φn ∈ β(R1(Xσ)) for n large enough
[Host, Durand-Host-Perrin] ; φn(aa) = 0

The frequency µv of a factor v is of the form µv = pv/qv
with pv = 1, and qv ∈ {3 · 2m+1, 3 · 2m} [Dekking]

Take f = 1v − µv
φn(aa) = αaa

(
1− pv

qv

)
− (|σn(a)| − αaa) · pvqv

αaa is the number of levels in the aa−tower in which all
elements begin with the word v

qvαaa = pvσ
n(a) ; Contradiction! , [B.-Cecchi]
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Pisot S -adic shifts





Pisot substitutions

Pisot substitution σ is primitive and its Perron–Frobenius
eigenvalue is a Pisot number

Fact Symbolic dynamical systems generated by Pisot substitutions
are balanced

Pisot irreducible substitution The characteristic polynomial of its
incidence matrix is irreducible



The Pisot substitution conjecture

Let σ be a Pisot irreducible substitution

Xσ
T shift−→ Xσy y

G −→
g 7→ag

G

(Xσ,T ) is measure-theoretically isomorphic to a translation on
a compact abelian group

(Xσ,T ) has pure discrete spectrum
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Substitutive structure + Algebraic assumption (Pisot)

= Order (discrete spectrum)



The Pisot substitution conjecture
Let σ be a Pisot irreducible substitution

Xσ
T shift−→ Xσy y

G −→
g 7→ag

G

(Xσ,T ) is measure-theoretically isomorphic to a translation on
a compact abelian group
(Xσ,T ) has pure discrete spectrum

The Pisot substitution Conjecture dates back to the 80’s

[Bombieri-Taylor, Rauzy,Thurston]

The conjecture is proved for two-letter alphabets

[Host, Barge-Diamond, Hollander-Solomyak]

Theorem [Barge] If σ is a Pisot irreducible substitution that is
injective on initial letters, and constant on final letters, then
(Xσ,T ) has pure discrete spectrum



Tribonacci dynamics and Tribonacci Kronecker map

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

Theorem [Rauzy’82] The symbolic dynamical system (Xσ,T ) is
measure-theoretically isomorphic to the translation Rβ on the
two-dimensional torus T2

Rβ : T2 → T2, x 7→ x + (1/β, 1/β2)

Markov partition for the toral automorphism

 1 1 1
1 0 0
0 1 0


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S-adic expansions and non-stationary dynamics

Definition An infinite word u is said S-adic if there exist

a set of substitutions S
an infinite sequence of substitutions (σn)n≥1 with values in S

such that
u = lim

n→+∞
σ1 ◦ σ2 ◦ · · · ◦ σn(0)

The terminology comes from Vershik adic transformations
Bratteli diagrams

S stands for substitution, adic for the inverse limit

We consider a multidimensional continued fraction algorithm that
governs the substitutions



Dictionary

S-adic description of a minimal symbolic dynamical system 

multidimensional continued fraction algorithm that governs its

letter frequency vector/ invariant measure

S-adic expansion

Unique ergodicity

Linear recurrence

Balance and Pisot
properties

Two-sided sequences
of substitutions

Shift on sequences of
substitutions

Continued fraction

Convergence

Bounded partial
quotients

Strong convergence

Natural extension

Continued fraction map



Which continued fraction algorithms?

We focus here on two algorithms

Arnoux-Rauzy algorithm

(a, b, c) 7→ (a− (b + c), b, c) if a ≥ b + c

Brun algorithm

(a, b, c) 7→ Sort(a, b, c − b) if a ≤ b ≤ c



Which continued fraction algorithms?

We focus here on two algorithms

Arnoux-Rauzy algorithm
• Defined on a set of zero measure
• Coding plus projection of an exchange of 6 intervals on the
circle
• They code particular systems of isometries (thin type)
(pseudogroups of rotations) [Arnoux-Yoccoz, Novikov, De
Leo-Dynnikov, Gaboriau-Levitt-Paulin, etc.]
• A geometric context: natural suspension flow
• Invariant measure, simplicity of the Lyapunov exponent
[Avila-Hubert-Skripchenko]

Brun algorithm
• Invariant measure, natural extension, Lyapunov exponents,
exponential convergence are well-known



S-adic Pisot dynamics

Theorem [B.-Steiner-Thuswaldner]

For almost every (α, β) ∈ [0, 1]2, the translation by (α, β) on
the torus T2 admits a natural symbolic coding provided by the
S-adic system associated with Brun multidimensional
continued fraction algorithm applied to (α, β)

For almost every Arnoux-Rauzy word, the associated S-adic
system has pure discrete spectrum



Arnoux-Rauzy words

σ1 : 1 7→ 1
2 7→ 21
3 7→ 31

σ2 : 1 7→ 12
2 7→ 2
3 7→ 32

σ3 : 1 7→ 13
2 7→ 23
3 7→ 3

u = lim
n→∞

σi0σi1 · · ·σin(1)

and every letter in {1, 2, 3} occurs infinitely often in (in)n≥0

Example The Tribonacci substitution and its fixed point

• The set of the letter density vectors of AR words has zero
measure [Arnoux-Starosta] and even Hausdorff dimension < 2
[Avila-Hubert-Skripchenko]
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Arnoux-Rauzy words

σ1 : 1 7→ 1
2 7→ 21
3 7→ 31

σ2 : 1 7→ 12
2 7→ 2
3 7→ 32

σ3 : 1 7→ 13
2 7→ 23
3 7→ 3

u = lim
n→∞

σi0σi1 · · ·σin(1)

and every letter in {1, 2, 3} occurs infinitely often in (in)n≥0

• The set of the letter density vectors of AR words has zero
measure [Arnoux-Starosta] and even Hausdorff dimension < 2
[Avila-Hubert-Skripchenko]

• There exist AR words that are not balanced
[Cassaigne-Ferenczi-Zamboni]

• There exist AR words that are (measure-theoretically) weak
mixing [Cassaigne-Ferenczi-Messaoudi]



Example

Let (in) ∈ {1, 2, 3}N be the fixed point of Tribonacci substitution

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

(in) = σ∞(1) = 121312112131212131211213

σ1 : 1 7→ 1
2 7→ 21
3 7→ 31

σ2 : 1 7→ 12
2 7→ 2
3 7→ 32

σ3 : 1 7→ 13
2 7→ 23
3 7→ 3

Take u = lim
n→∞

σi0σi1 · · ·σin(1)

We use (in) as a directive sequence

Theorem [B-Steiner-Thuswaldner] (Xu,T ) has pure discrete
spectrum
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(in) = σ∞(1) = 121312112131212131211213

σ1 : 1 7→ 1
2 7→ 21
3 7→ 31

σ2 : 1 7→ 12
2 7→ 2
3 7→ 32

σ3 : 1 7→ 13
2 7→ 23
3 7→ 3

Take u = lim
n→∞

σi0σi1 · · ·σin(1)

We use (in) as a directive sequence

Theorem [B-Steiner-Thuswaldner] (Xu,T ) has pure discrete
spectrum for any Arnoux-Rauzy word u whose directive sequence
(in) belongs to the shift generated by a primitive substitution



S-adic Pisot dynamics
Theorem [B.-Steiner-Thuswaldner]

For almost every (α, β) ∈ [0, 1]2, the S-adic system provided
by the Brun multidimensional continued fraction algorithm
applied to (α, β) is measurably conjugate to the translation by
(α, β) on the torus T2

For almost every Arnoux-Rauzy word, the associated S-adic
system has discrete spectrum

Proof Based on

“adic IFS” (Iterated Function System)

Theorem [Avila-Delecroix]
The Arnoux-Rauzy S-adic system is Pisot

Theorem [Avila-Hubert-Skripchenko]
A measure of maximal entropy for the Rauzy gasket

Finite products of Brun/Arnoux-Rauzy substitutions have
discrete spectrum [B.-Bourdon-Jolivet-Siegel] Finiteness
property



S-adic Pisot dynamics

Theorem [B.-Steiner-Thuswaldner]

For almost every (α, β) ∈ [0, 1]2, the S-adic system provided
by the Brun multidimensional continued fraction algorithm
applied to (α, β) is measurably conjugate to the translation by
(α, β) on the torus T2

For almost every Arnoux-Rauzy word, the associated S-adic
system has discrete spectrum

S-adic Pisot conjecture Every unimodular and algebraically
irreducible S-adic Pisot system has pure discrete spectrum



Pisot S-adic systems

Let S be a set of unimodular substitutions

Let (D,Σ, ν) with D ⊂ SN be an ergodic subshift equipped
with a probability measure ν. We assume log-integrability

We consider the generic behaviour of the cocyle
An(σ) = Mσ0 · · ·Mσn for σ = (σn) ∈ D

The S-adic system (D,S , ν) is said to Pisot S-adic if the Lyapunov
exponents θ1, θ2, . . . , θd of (D,Σ, ν) satisfy

θ1 > 0 > θ2 ≥ θ3 ≥ · · · ≥ θd



The PRICE to pay

M[k,`] = Mk · · ·M`−1 u(k) = lim
n→∞

σikσi1 · · ·σin(a) ; (X (k),T )

(P) Primitivity ∀k , M[k,`) > 0 for some ` > k

(R) Recurrence For each ` there exist n = n(`) s.t.

(σ0, σ1, . . . , σ`−1) = (σn, σnk+1, . . . , σn+`−1)

(I) Algebraic irreducibility for each k ∈ N, the characteristic
polynomial of M[k,`) is irreducible for all sufficiently large `

(C) C -balance There is C > 0 such that n = n(`) can be

chosen such that X
(n+`)
σ has balance bounded by C

(E) Generalized Left Eigenvector



The PRICE to pay

M[k,`] = Mk · · ·M`−1 u(k) = lim
n→∞

σikσi1 · · ·σin(a) ; (X (k),T )

(P) Primitivity ∀k , M[k,`) > 0 for some ` > k

cf. Furstenberg’s condition

There exists h ∈ N and a positive matrix B such that
M[`k−h,`k ) = B for all k ∈ N

(R) Recurrence For each ` there exist n = n(`) s.t.

(σ0, σ1, . . . , σ`−1) = (σn, σnk+1, . . . , σn+`−1)

(I) Algebraic irreducibility for each k ∈ N, the characteristic
polynomial of M[k,`) is irreducible for all sufficiently large `
(C) C -balance There is C > 0 such that n = n(`) can be

chosen such that X
(n+`)
σ has balance bounded by C

(E) Generalized Left Eigenvector

lim
k→∞

v(nk )/‖v(nk )‖ = v



The PRICE to pay

M[k,`] = Mk · · ·M`−1 u(k) = lim
n→∞

σikσi1 · · ·σin(a) ; (X (k),T )

(P) Primitivity ∀k , M[k,`) > 0 for some ` > k

(R) Recurrence For each ` there exist n = n(`) s.t.

(σ0, σ1, . . . , σ`−1) = (σn, σnk+1, . . . , σn+`−1)

(I) Algebraic irreducibility for each k ∈ N, the characteristic
polynomial of M[k,`) is irreducible for all sufficiently large `

(C) C -balance There is C > 0 such that n = n(`) can be

chosen such that X
(n+`)
σ has balance bounded by C

(E) Generalized Left Eigenvector

Theorem If (D,Σ, ν) is a Pisot S-adic shift such that there exists a
cylinder of positive measure in D corresponding to a substitution
with positive incidence matrix, then the property PRICE holds a.e.



Dendric subshifts



Extension graphs and dendric subshifts

We consider the set of factors LX of a minimal subshift X ⊂ AN

Let w ∈ LX

`(w) = {a ∈ A | aw ∈ LX}

r(w) = {a ∈ A | wa ∈ LX}

e(w) = {(a, b) ∈ A× A | awb ∈ LX}

The extension graph of the finite word w is the undirected graph
G (w) having

• `(w) and r(w) as vertices

• e(w) as edges
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Extension graphs and dendric subshifts
We consider the set of factors LX of a minimal subshift X ⊂ AN

Let w ∈ LX

`(w) = {a ∈ A | aw ∈ LX}
r(w) = {a ∈ A | wa ∈ LX}

e(w) = {(a, b) ∈ A× A | awb ∈ LX}

The extension graph of the finite word w is the undirected graph
G (w) having

• `(w) and r(w) as vertices

• e(w) as edges

Definition We say that X is dendric if the graph G (w) is a tree for
any w ∈ LX

Tree = undirected, acyclic and connected graph
[B.,Berstel, Cecchi, De Felice, Delecroix, Dolce, Durand,Leroy,

Petite, Perrin, Reutenauer, Rindone, etc.]



The Thue-Morse word is not a dendric word

τ : 0 7→ 01, 1 7→ 10

u = τ∞(0) = 01101001100101101001011001 · · ·

w = 01 w = 010



The Fibonacci word is a dendric word

σ : a 7→ ab, b 7→ a

u = σ∞(a) = abaababaabaababaababaab · · ·

The factors of length 2 are aa, ab, ba



Examples of dendric words

A dendric word u on k letters has (k − 1)n + 1 factors of length n

Sturmian words are dendric

Arnoux-Rauzy words are dendric

l(w) = r(w) = 3

Codings of interval exchanges are dendric

l(w) = r(w) = 2 for w large enough



Dendric subshifts are S-adic

Let u ∈ AN be a uniformly recurrent dendric word over an alphabet
of cardinality d

Theorem [B.,De Felice,Dolce,Leroy,Perrin,Reutenauer,Rindone]
Let w be a factor of u. The set of return words to w is a basis of
the free group Fd .
The decoding of a uniformly recurrent dendric word u with respect

to the return words of a given factor is again a dendric word. ,

; Dendric subshifts are S-adic, the substitutions are invertible

Theorem B.-Steiner-Thuswaldner-Yassawi] Let (X ,T ) be a
minimal dendric shift. Consider a return word S-adic representation
of (X ,T ). Then, the natural Bratteli-Vershik system associated
with it is properly ordered and is topologically conjugate to (X ,T ).
Its topological rank is bounded by the size of the alphabet of X.



Balancedess and dendric subshfits

Theorem [B.-Cecchi] Let (X ,T ) be a minimal dendric subshift.
Then (X ,T ) is balanced on letters if and only if it is balanced on
factors.
In particular, if (X ,T ) is balanced, then all the frequencies of
factors are additive topological eigenvalues.

Example: Arnoux-Rauzy case

The subshift generated by a primitive Arnoux-Rauzy
substitution is balanced

Let (Xi,T ) be an Arnoux-Rauzy subshift on a three-letter
alphabet with SAR -directive sequence i = (in)n≥0. If there
exists some constant h such that we do not have
in = in+1 = · · · = in+h for any n ≥ 0, then (Xi,T ) is balanced
[B.-Cassaigne-Steiner]



Image group of a dendric subshift
Let (X ,S , µ) be a minimal and uniquely ergodic dendric subshift

I (X , S) =

{∫
fdµ ; f ∈ C (X ,Z)

}
Theorem [B.-Cecchi-Dolce-Durand-Leroy-Perrin-Petite]

I (X , S) =
∑

a letter in A

Zµ([a])

Proof

For any α ∈ I (X ,T ) ∩ (0, 1), there exists a clopen set U such
that α = µ(U)

Extension graph The measure of any cylinder is in∑
a∈A

Zµ([a])

Frequencies of letters determine frequencies of factors

6= Thue-Morse Z[1/2] dyadic rationals
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