Dyadisc2 : Dynamiques et Analyse Discrète : analyse spectrale des sous-shifts

Spectral set conjecture on finite abelian groups

Ruxi Shi Université de Picardie Jules Verne

11 july 2018

Spectral set conjecture on \mathbb{R}^d

Spectral set conjecture on locally compact abelian groups

Spectral set conjecture on cyclic groups

Ruxi Shi | Spectral set conjecture on finite abelian groups

Spectral sets in \mathbb{R}^d

- Let *m* be the Lebesgue measure in \mathbb{R}^d .
- Let $\Omega \subset \mathbb{R}^d$ be a Borel set with $0 < m(\Omega) < +\infty$.
- Definition. The set Ω is spectral if there exists a set Λ ⊂ ℝ^d such that E(Λ) = {e^{2πi(λ,x)} : λ ∈ Λ} forms an orthogonal basis of L²(Ω).
- The set Λ is called a spectrum of Ω and (Ω, Λ) is called a spectral pair.

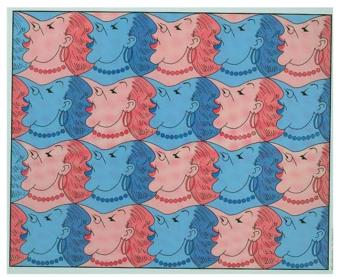
Example:

- The *d*-dimensional cube $[0, 1]^d$ is spectral.
- ([0, 1] \cup [2, 3], $\mathbb{Z} \cup (\mathbb{Z} + 1/4)$) is a spectral pair.
- The *d*-dimensional balls are NOT spectral: losevich–Katz–Pedersen (1999).
- The non-symmetric polytopes are NOT spectral: Kolountzakis (2000).

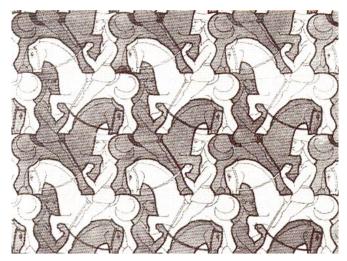
- Let $\Omega \subset \mathbb{R}^d$ be a Borel set with $0 < m(\Omega) < +\infty$.
- Definition. The set Ω tiles \mathbb{R}^d by translations, if $\exists T \subset \mathbb{R}^d$ s. t. $\{\Omega + t : t \in T\}$ forms a partition a.e. of \mathbb{R}^d .
- The set T is called a tiling complement of Ω and (Ω, T) is called a tiling pair.

Example:

- The *d*-dimensional cube $[0, 1]^d$ is a tile
- ([0,1] \cup [2,3], $4\mathbb{Z} \cup (4\mathbb{Z} + 1)$) is a tiling pair.



Counter-example



Conjecture(Fuglede, 1974)

A Borel set Ω is a tile of \mathbb{R}^d if and only if it is a spectral set.

- Segal's question: for which region Ω in R^d, the partial differential operators in C[∞]_c(Ω) have commutative self-adjoint extensions in L²(Ω)?
- Conjecture holds if T or Λ is a lattice: Fuglede (1974).
- Spectral sets \Rightarrow tiles for $d \ge 5$: Tao (2003).
- Conjecture fails for d ≥ 3 (both direction): Matolsci(2005), Farkas-Gy(2006), Matolsci-Kolountzakis(2006), Farkas-Matolsci-Móra(2006):
- It remains open for d = 1, 2.

Partial positive results for d = 1, 2

- Union of two interval: Łaba (2001).
- Self-affine tiles: Bandt (1991), Kenyon (1992), Lagarias–Wang (1996, 1997), Lai–Lau–Rao (2013, 2017)
- Convex planar set: losevich, Katz and Tao (2003).
- • • • •

- $(\{0,1\},\{0,2\})$ is a tile pair in $\mathbb{Z}/4\mathbb{Z}$.
- $(\{0,1\},\{0,2\})$ is a spectral pair in $\mathbb{Z}/4\mathbb{Z}$, here $\widehat{\mathbb{Z}}/4\mathbb{Z} \simeq \mathbb{Z}/4\mathbb{Z}$.

Spectral set conjecture in LCA groups

Conjecture

A Borel set Ω is a tile in *G* if and only if it is a spectral set.

True in \mathbb{Q}_p : Fan–Fan–Liao–S (2016).

Dutkay-Lai (2013):

(i) T-S(G): Tile \Rightarrow Spectral direction holds in G. T- $S(\mathbb{R}) \Leftrightarrow T$ - $S(\mathbb{Z}) \Leftrightarrow T$ - $S(\mathbb{Z}/m\mathbb{Z})$ for all $m \in \mathbb{N}$

(ii) *S*-*T*(*G*): the Spectral \Rightarrow Tile direction holds in *G*. *S*-*T*(\mathbb{R}) \Rightarrow *S*-*T*(\mathbb{Z}) \Rightarrow *S*-*T*($\mathbb{Z}/m\mathbb{Z}$) for all $m \in \mathbb{N}$ The conjecture is true for:

- ▶ $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$, *p* prime: losevich-Mayeli-Pakianathan (2015).
- ▶ $\mathbb{Z}/p^n q\mathbb{Z}$, *p*, *q* distinct primes: Malikiosis-Kolountzakis (2016).
- ► T- $S(\mathbb{Z}/p^nq^m\mathbb{Z})$, p, q distinct primes: Łaba (2002).

Spectral sets \Rightarrow tiles:

- ► (ℤ/3ℤ)⁶: Tao (2003).
- $(\mathbb{Z}/8\mathbb{Z})^3$: Kolountzakis–Matolcsi (2006).
- (Z/pZ)⁴ (p ≡ 1 mod 4) et (Z/pZ)⁵ (p ≡ 3 mod 4): Aten et al. (2017).

Tiles \Rightarrow spectral sets:

• $(\mathbb{Z}/24\mathbb{Z})^3$: Farkas–Matolcsi–Mora (2006).

Tao's counterexample in $(\mathbb{Z}/3\mathbb{Z})^6$

- Definition. Hadamard matrix of order *n*: entries are *n*-th roots of unity and whose rows are mutually orthogonal.
- Example (Tao 2003): let $\omega = e^{\frac{2\pi i}{3}}$,

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & \omega & \omega & \omega^2 & \omega^2 \\ 1 & \omega & 1 & \omega^2 & \omega^2 & \omega \\ 1 & \omega & \omega^2 & 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega^2 & \omega & 1 & \omega \\ 1 & \omega^2 & 1 & \omega^2 & \omega & 1 \end{pmatrix}$$

• Take $\Omega = \{e_1, e_2, \dots, e_6\}$ to be the standard basis of $(\mathbb{Z}/3\mathbb{Z})^6$. Take $\Lambda = \{\xi_1, \xi_2, \dots, \xi_6\}$ where $(e^{2\pi i(e_j \cdot \xi_k)})_{j=1}^6$ matches the *k*-th row of *H*.

• Let $\mathbb{Z}_N = \mathbb{Z}/N\mathbb{Z}$. Let $\omega_N = e^{2\pi i/N}$. Let $A \subset \mathbb{Z}_N$.

▶ Definition. The mask polynomial *A*(*X*) is given by

$$\sum_{a\in A} X^a \in \mathbb{Z}[X]/(X^N-1).$$

► $\widehat{1}_A(n) = A(\omega_N^{-n}), \forall n \in \mathbb{Z}_N.$

▶ Definition. $\mathcal{Z}_A := \{n \in \mathbb{Z}_N : A(\omega_N^n) = 0\} = \{n \in \mathbb{Z}_N : \widehat{1}_A(n) = 0\}.$

• $n \in \mathcal{Z}_A \Leftrightarrow nr \in \mathcal{Z}_A$ for any $r \in \mathbb{Z}_N^*$.

Let $A, B \subset \mathbb{Z}_N$. The following are equivalent. (1) (A, B) is a spectral pair. (2) $\sharp A = \sharp B$ and $(B - B) \setminus \{0\} \subset \mathcal{Z}_A$. (3) $M = \left(e^{2\pi i \frac{ab}{N}}\right)_{b \in B, a \in A}$ is a complex Hadamard matrix.

Let $A, B \subset \mathbb{Z}_N$. The following statements are equivalent. (1) (A, B) is a tiling pair. (2) $A \oplus B = \mathbb{Z}_N$. (3) $A(X)B(X) = 1 + X + X^2 + \dots + X^{N-1} \mod X^N - 1$.

Coven–Meyerowitz property

- Let Φ_n be the cyclotomic polynomial of order *n*.
- Let $S := \{p^{\alpha} \mid N : p \text{ prime }\}.$
- Let $A \subset \mathbb{Z}_N$. $S_A := \{s \in S : \Phi_s(X) \mid A(X)\}.$
- Definition. (T1): $\#A = \prod_{s \in S_A} \Phi_s(1)$.
- ▶ Definition. (T2): Φ_{s1s2...sm}(X) divides A(X) for every powers of distinct primes s₁, s₂,..., s_m ∈ S_A.
- ► Let *d* | *N*.

$$d \in \mathcal{Z}_A \iff \Phi_{N/d}(X) \mid A(X).$$

Property (T1): examples

Let $A \subset \mathbb{Z}_N$. (1) $N = p^n$. (T1) is equivalent to

$$p^{\sharp(\mathcal{Z}_A \cap \{1, p, p^2, \dots, p^{n-1}\})} = \sharp A$$

(2) $N = p^n q^m$. (T1) is equivalent to $p^{\sharp(\mathcal{Z}_A \cap \{q^m, pq^m, p^2q^m, ..., p^{n-1}q^m\})} \cdot q^{\sharp(\mathcal{Z}_A \cap \{p^n, p^nq, p^nq^2, ..., p^nq^{m-1}\})} = \sharp A.$

(3) N = pqr. (T1) holds if and only if $p^{\sharp(\mathcal{Z}_A \cap \{qr\})} \cdot q^{\sharp(\mathcal{Z}_A \cap \{pr\})} \cdot r^{\sharp(\mathcal{Z}_A \cap \{pq\})} = \sharp A.$

Property (T2): examples

Let $A \subset \mathbb{Z}_N$. (1) $N = p^n$. (T2) holds vacuously. (2) $N = p^n q^m$. (T2) is equivalent to $p^a q^m, p^n q^b \in \mathbb{Z}_A \Rightarrow p^a q^b \in \mathbb{Z}_A$.

(3) N = pqr. (T2) holds if and only if

 $pq, pr \in Z_A \Rightarrow p \in Z_A;$ $qr, pr \in Z_A \Rightarrow r \in Z_A;$ $pq, qr \in Z_A \Rightarrow q \in Z_A.$

Spectral sets, tiles and (T1), (T2)

- ▶ (T1)+(T2) \Rightarrow tiles for all \mathbb{Z}_N , $N \in \mathbb{N}$: Coven–Meyerowitz (1998).
- ▶ Tiles \Rightarrow (T1) for all \mathbb{Z}_N , $N \in \mathbb{N}$: Coven–Meyerowitz (1998).
- Tiles \Rightarrow (T1)+(T2) for \mathbb{Z}_N with $N = p^n q^m$: Łaba (2002).
- Conjecture (Coven–Meyerowitz):

 $(T1)+(T2) \Leftrightarrow \text{tiles for all } \mathbb{Z}_N, N \in \mathbb{N}.$

- ▶ (T1)+(T2) \Rightarrow spectral sets for all \mathbb{Z}_N , $N \in \mathbb{N}$: Łaba (2002).
- Spectral sets \Rightarrow (T1)+(T2) for \mathbb{Z}_N with $N = p^n q$: Malikiosisa–Kolountzakis (2017).
- ▶ If for all \mathbb{Z}_N , $N \in \mathbb{N}$,

```
Spectral sets \iff (T1) + (T2)
```

```
then S-T(\mathbb{R}): Dutkay-Lai (2013).
```


Theorem (S, 2018)

Let *N* be a square-free integer. Let $A \subset \mathbb{Z}_N$. Then *A* is a tile if and only if it satisfies (T1) and (T2).

Theorem (S, 2018)

Let p, q, r be distinct prime numbers. Let $A \subset \mathbb{Z}_{pqr}$. Then A is a spectral set if and only if it satisfies (T1) and (T2).

Corollary

The spectral set conjecture holds on \mathbb{Z}_{pqr} with p, q, r distinct prime numbers.

For a given natural number *N*, what are the possible integers *n* for which there exist *N*-th roots of unity $e^{\frac{2\pi i \alpha_1}{N}}, e^{\frac{2\pi i \alpha_2}{N}}, \dots, e^{\frac{2\pi i \alpha_n}{N}}$ such that

$$e^{\frac{2\pi i\alpha_1}{N}} + e^{\frac{2\pi i\alpha_2}{N}} + \dots + e^{\frac{2\pi i\alpha_n}{N}} = 0?$$

Theorem (Lam and Leung, 2000)

Let *N* be a positive integer. Let $A \subset \mathbb{Z}_N$. If $A(\omega_N) = 0$, then there exist $n_p \in \mathbb{N}$ for all *p* prime with $p \mid N$ such that $\sharp A = \sum_{p \mid N} n_p p$.

Proposition (Lam and Leung, 2000)

Let $n \mid N$ be such that N/n has at most two prime divisors, say p and q. If $A(\omega_N^n) = 0$, then

$$A(X^n) \equiv P(X^n) \Phi_p(X^{N/p}) + Q(X^n) \Phi_q(X^{N/q}) \mod X^N - 1,$$

where P and Q have nonnegative coefficients.

- The polynomial $A(X^n)$ is the mask polynomial of the multi-set $n \cdot A$.
- Φ_p(X^{N/p}) is the mask polynomial of the subgroup N/p Z_N. Its cosets are called *p*-cycles.
- The above proposition shows that n · A is the disjoint union of p-cycles and q-cycles.

Let N = pqr with p, q, r distinct primes. Let A be a subset with mask polynomial

$$A(X) = (X^{qr} + X^{2qr} + \dots + X^{(p-1)qr})(X^{pr} + X^{2pr} + \dots + X^{(q-1)pr}) + (X^{pq} + X^{2pq} + \dots + X^{(r-1)pq}),$$

we have $A(\omega_N) = 0$ but A cannot be expressed as a union of *p*-, *q*- and *r*-cycles

N/n having only one prime divisor

Proposition

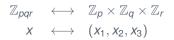
Let $n \mid N$ be such that N/n has only one prime divisor, say p. If $A(\omega_N^n) = 0$, then

$$A(X^n) \equiv P(X^n) \Phi_p(X^{N/p}) \mod X^N - 1,$$

where P has nonnegative coefficients.

- $n \cdot A$ is the disjoint union of *p*-cycles.
- ► This is the key tool to prove that Spectral set conjecture holds in Z_{pⁿ}: Łaba (2002), also Fan–Fan–S (2016).

Representation of \mathbb{Z}_{pqr}



▶
$$x_1 \equiv x \mod \mathbb{Z}_p, x_2 \equiv x \mod \mathbb{Z}_q \text{ and } x_3 \equiv x \mod \mathbb{Z}_r.$$

▶ *p*-cycle: {(0, x_2, x_3), (1, x_2, x_3), ..., ($p - 1, x_2, x_3$)}.

Sketch of proof

Lemma

Let (A, B) be a spectral pair in \mathbb{Z}_{pqr} . If $pq \notin \mathcal{Z}_B$, then there exist a subset $S \subset \mathbb{Z}_p \times \mathbb{Z}_q$ and a function $f : \mathbb{Z}_p \times \mathbb{Z}_q \to \mathbb{Z}_r$ such that

$$A = \{(x, y, f(x, y)) : (x, y) \in S\}.$$

Moreover, we have that $\sharp A \leq pq$ and that the equality holds if and only if $S = \mathbb{Z}_p \times \mathbb{Z}_q$.

Proof

If the set A has two elements (x, y, z) and (x, y, z') with $z \neq z'$, then we have

$$(x, y, z) - (x, y, z') = (0, 0, z - z') \in pq\mathbb{Z}_{pqr}^*.$$

It follows that $pq \in \mathcal{Z}_B$, which is a contradiction.

Sketch of proof

We decompose the proof into three cases:

- (1) $\sharp(\mathcal{Z}_A \cap \{pq, pr, qr\}) = 2;$
- (2) $\sharp(\mathcal{Z}_A \cap \{pq, pr, qr\}) = 1;$
- (3) $\sharp(\mathcal{Z}_A \cap \{pq, pr, qr\}) = 0.$

Proof of (1)

WLOG, $qr, pr \in \mathcal{Z}_A$ and $pq \notin \mathcal{Z}_A$. It follows that $pq \mid \sharp A = \sharp B$. We thus have $pq \notin \mathcal{Z}_B$ and $\sharp A = pq$. (T1) holds. There exists a function $f : \mathbb{Z}_p \times \mathbb{Z}_q \to \mathbb{Z}_r$ such that

$$A = \{(x, y, f(x, y)) : (x, y) \in \mathbb{Z}_p \times \mathbb{Z}_q\}.$$

We obtain that $r \in \mathcal{Z}$ and thus A satisfies the (T2).

Sketch of proof

Proof of (3)

Let *B* be a spectrum of *A*. Step 1: $\#(Z_B \cap \{pq, pr, qr\}) = 0$. Step 2: $\#A = \#B < \min\{p, q, r\}$. This implies that #A = #B = 1.

Proof of (2)

Let *B* be a spectrum of *A*. WLOG, $qr \in \mathbb{Z}$ and $pq, pr \notin \mathbb{Z}$. (T2) holds vacuously. Step 1: $\sharp(\mathbb{Z}_B \cap \{pq, pr, qr\}) = 1$. Step 2: $\sharp A = \sharp B = p$. It follows that (T1) holds.

Open questions

31

Dimension one:

- ▶ $\mathbb{Z}/p^n q\mathbb{Z}$, *p*, *q* distinct primes: Malikiosis–Kolountzakis (2016).
- ▶ $\mathbb{Z}/p^n q^6 \mathbb{Z}$, *p*, *q* distinct primes: Malikiosis (in progress).
- ► T- $S(\mathbb{Z}/p^n q^m \mathbb{Z})$, p, q distinct primes: Łaba (2002).
- ▶ $\mathbb{Z}/p^n q^m \mathbb{Z}$? In general, $\mathbb{Z}/m\mathbb{Z}$?

Higher dimension:

- ▶ $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$, *p* prime: losevich–Mayeli–Pakianathan (2015).
- $\mathbb{Z}/p^2\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$, *p* prime: S (in progress).
- $\blacktriangleright \mathbb{Z}/p^2\mathbb{Z} \times \mathbb{Z}/p^2\mathbb{Z}? \text{ In general, } \mathbb{Z}/p^n\mathbb{Z} \times \mathbb{Z}/p^n\mathbb{Z}?$
- $\blacktriangleright \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}?$

Thanks for your attention!