Dimension group of dendric subshifts

Paulina CECCHI B.

(Joint work with Valérie Berthé, F. Dolce, F. Durand, J. Leroy, D. Perrin and S. Petite)

Institute de Recherche en Informatique Fondamentale Université Paris Diderot - Paris 7

Departamento de Matemática y Ciencia de la Computación
Facultad de Ciencia. Universidad de Santiago de Chile

Dyadisc2: Workshop on the spectral analysis of subshifts,

 Amiens, July 2018
Motivation
 Consider the two following dynamical systems

Motivation

Consider the two following dynamical systems

- The subshift generated by the Tribonacci word $\sigma^{\infty}(1)$ in $\{1,2,3\}^{\mathbb{N}}$, where

$$
\sigma: 1 \mapsto 12 ; \quad 2 \mapsto 13 ; \quad 3 \mapsto 1
$$

Motivation

Consider the two following dynamical systems

- The subshift generated by the Tribonacci word $\sigma^{\infty}(1)$ in $\{1,2,3\}^{\mathbb{N}}$, where

$$
\sigma: 1 \mapsto 12 ; \quad 2 \mapsto 13 ; \quad 3 \mapsto 1
$$

Letter frequencies in $\sigma^{\infty}(1)$ are $\left(\alpha, \alpha^{2}, \alpha^{3}\right)$.

Motivation

Consider the two following dynamical systems

- The subshift generated by the Tribonacci word $\sigma^{\infty}(1)$ in $\{1,2,3\}^{\mathbb{N}}$, where

$$
\sigma: 1 \mapsto 12 ; \quad 2 \mapsto 13 ; \quad 3 \mapsto 1
$$

Letter frequencies in $\sigma^{\infty}(1)$ are $\left(\alpha, \alpha^{2}, \alpha^{3}\right)$.

- The subshift generated by a three-intervale exchange with the same frequencies

Motivation

Consider the two following dynamical systems

- The subshift generated by the Tribonacci word $\sigma^{\infty}(1)$ in $\{1,2,3\}^{\mathbb{N}}$, where

$$
\sigma: 1 \mapsto 12 ; \quad 2 \mapsto 13 ; \quad 3 \mapsto 1
$$

Letter frequencies in $\sigma^{\infty}(1)$ are $\left(\alpha, \alpha^{2}, \alpha^{3}\right)$.

- The subshift generated by a three-intervale exchange with the same frequencies

- How can we compare this two systems?

Motivation

- In the Tribonacci subshift, there exists a unique infinte word $x_{G}=x_{0} x_{1} x_{2} \cdots$ with three different pasts: the words

$$
\begin{aligned}
& y_{1}=p_{1}\left(x_{G}\right) \cdot x_{G} \\
& y_{2}=p_{2}\left(x_{G}\right) \cdot x_{G} \\
& y_{3}=p_{3}\left(x_{G}\right) \cdot x_{G}
\end{aligned}
$$

form three proper asympotic pairs, i.e.

$$
\lim _{n \rightarrow \infty} d\left(T^{n}\left(y_{i}\right), T^{n}\left(y_{j}\right)\right)=0
$$

Motivation

- In the Tribonacci subshift, there exists a unique infinte word $x_{G}=x_{0} x_{1} x_{2} \cdots$ with three different pasts: the words

$$
\begin{aligned}
& y_{1}=p_{1}\left(x_{G}\right) \cdot x_{G} \\
& y_{2}=p_{2}\left(x_{G}\right) \cdot x_{G} \\
& y_{3}=p_{3}\left(x_{G}\right) \cdot x_{G}
\end{aligned}
$$

form three proper asympotic pairs, i.e.

$$
\lim _{n \rightarrow \infty} d\left(T^{n}\left(y_{i}\right), T^{n}\left(y_{j}\right)\right)=0
$$

- In the three-interval exchange there are two infinite words x_{G}^{1}, x_{G}^{2} with two different pasts \Rightarrow two asymptotic pairs.

Motivation

- In the Tribonacci subshift, there exists a unique infinte word $x_{G}=x_{0} x_{1} x_{2} \cdots$ with three different pasts: the words

$$
\begin{aligned}
& y_{1}=p_{1}\left(x_{G}\right) \cdot x_{G} \\
& y_{2}=p_{2}\left(x_{G}\right) \cdot x_{G} \\
& y_{3}=p_{3}\left(x_{G}\right) \cdot x_{G}
\end{aligned}
$$

form three proper asympotic pairs, i.e.

$$
\lim _{n \rightarrow \infty} d\left(T^{n}\left(y_{i}\right), T^{n}\left(y_{j}\right)\right)=0
$$

- In the three-interval exchange there are two infinite words x_{G}^{1}, x_{G}^{2} with two different pasts \Rightarrow two asymptotic pairs.
- Since proper asymptotic pairs are preserved under conjugacy, both subshifts are not conjugate.

Motivation

- In the Tribonacci subshift, there exists a unique infinte word $x_{G}=x_{0} x_{1} x_{2} \cdots$ with three different pasts: the words

$$
\begin{aligned}
& y_{1}=p_{1}\left(x_{G}\right) \cdot x_{G} \\
& y_{2}=p_{2}\left(x_{G}\right) \cdot x_{G} \\
& y_{3}=p_{3}\left(x_{G}\right) \cdot x_{G}
\end{aligned}
$$

form three proper asympotic pairs, i.e.

$$
\lim _{n \rightarrow \infty} d\left(T^{n}\left(y_{i}\right), T^{n}\left(y_{j}\right)\right)=0
$$

- In the three-interval exchange there are two infinite words x_{G}^{1}, x_{G}^{2} with two different pasts \Rightarrow two asymptotic pairs.
- Since proper asymptotic pairs are preserved under conjugacy, both subshifts are not conjugate.
- But they are orbit equivalent, they are even strong orbit equivalent.

Outline

- Orbit equivalence and Dimension group of a subshift.
- Dendric subshifts.
- Dimension group of dendric subshifts.

Orbit equivalence and Dimension group

Orbit equivalence

- Two (topological) dynamical systems (X, T) and (Y, S) are (topological) orbit equivalent if there is a homeomorphism $h: X \rightarrow Y$ such that for all $x \in X$

$$
h\left(\left\{T^{n}(x): n \in \mathbb{Z}\right\}\right)=\left\{S^{n}(h(x)): n \in \mathbb{Z}\right\}
$$

Orbit equivalence

- Two (topological) dynamical systems (X, T) and (Y, S) are (topological) orbit equivalent if there is a homeomorphism $h: X \rightarrow Y$ such that for all $x \in X$

$$
h\left(\left\{T^{n}(x): n \in \mathbb{Z}\right\}\right)=\left\{S^{n}(h(x)): n \in \mathbb{Z}\right\},
$$

- If (X, T) and (Y, S) are minimal, there exist a maps $n: X \rightarrow \mathbb{Z}$ (the cocycle map) such that, for all $x \in X$,

$$
h \circ T(x)=S^{n(x)} \circ h(x) .
$$

Orbit equivalence

- Two (topological) dynamical systems (X, T) and (Y, S) are (topological) orbit equivalent if there is a homeomorphism $h: X \rightarrow Y$ such that for all $x \in X$

$$
h\left(\left\{T^{n}(x): n \in \mathbb{Z}\right\}\right)=\left\{S^{n}(h(x)): n \in \mathbb{Z}\right\},
$$

- If (X, T) and (Y, S) are minimal, there exist a maps $n: X \rightarrow \mathbb{Z}$ (the cocycle map) such that, for all $x \in X$,

$$
h \circ T(x)=S^{n(x)} \circ h(x) .
$$

- (X, T) and (Y, S) are strong orbit equivalent if n has at most one point of discontinuity.

Dimension group

- Consider $C(X, \mathbb{Z})$ the set of continuous functions from X to \mathbb{Z}, $\beta: C(X, \mathbb{Z}) \rightarrow C(X, \mathbb{Z})$ given by

$$
\beta f=f \circ T-f
$$

Images of β are called coboundaries.

Dimension group

- Consider $C(X, \mathbb{Z})$ the set of continuous functions from X to \mathbb{Z}, $\beta: C(X, \mathbb{Z}) \rightarrow C(X, \mathbb{Z})$ given by

$$
\beta f=f \circ T-f
$$

Images of β are called coboundaries.

- Define $H(X, T):=C(X, \mathbb{Z}) / \beta C(X, \mathbb{Z})$.

Dimension group

- Consider $C(X, \mathbb{Z})$ the set of continuous functions from X to \mathbb{Z}, $\beta: C(X, \mathbb{Z}) \rightarrow C(X, \mathbb{Z})$ given by

$$
\beta f=f \circ T-f
$$

Images of β are called coboundaries.

- Define $H(X, T):=C(X, \mathbb{Z}) / \beta C(X, \mathbb{Z})$.
- Is is a partially ordered abelian group, whose positive cone is given by

$$
\begin{aligned}
& H(X, T)^{+}=\{[f] \in H(X, \mathbb{Z}): f \in C(X, \mathbb{N})\} \\
& \left([f] \geq[g] \Leftrightarrow[f]-[g] \in H(X, T)^{+}\right)
\end{aligned}
$$

Dimension group

- The class [1] of the constant function 1 is an order unit of $H(X, T)$: for every $[f] \in H(X, T)$, there exists $n \in \mathbb{N}$ such that

$$
[f] \leq n[1] .
$$

Dimension group

- The class [1] of the constant function 1 is an order unit of $H(X, T)$: for every $[f] \in H(X, T)$, there exists $n \in \mathbb{N}$ such that

$$
[f] \leq n[1] .
$$

- The triple

$$
K^{0}(X, T)=\left(H(X, T), H(X, T)^{+},[1]\right)
$$

is an ordered group with distinguished unit.

Dimension group

- The class [1] of the constant function 1 is an order unit of $H(X, T)$: for every $[f] \in H(X, T)$, there exists $n \in \mathbb{N}$ such that

$$
[f] \leq n[1] .
$$

- The triple

$$
K^{0}(X, T)=\left(H(X, T), H(X, T)^{+},[1]\right)
$$

is an ordered group with distinguished unit.

Theorem (Giordano-Putnam-Skau '95)

(X, T) and (Y, S) are strong orbit equivalent if an only if

$$
K^{0}(X, T) \cong K^{0}(Y, S)
$$

(as ordered group with unit).

Dimension group

Example. The dimension groups associated to the Tribonacci shift and the three-interval exchange with frequencies $\left(\alpha, \alpha^{2}, \alpha^{3}\right)$ are both

$$
\left(\mathbb{Z}^{3},\left\{\mathbf{x} \in \mathbb{Z}^{3} \mid\langle\mathbf{x}, \mathbf{f}\rangle>0\right\} \cup\{0\}, \mathbf{1}\right) .
$$

where $\mathbf{f}=\left(\alpha, \alpha^{2}, \alpha^{3}\right)$.

Dimension group

Example. The dimension groups associated to the Tribonacci shift and the three-interval exchange with frequencies $\left(\alpha, \alpha^{2}, \alpha^{3}\right)$ are both

$$
\left(\mathbb{Z}^{3},\left\{\mathbf{x} \in \mathbb{Z}^{3} \mid\langle\mathbf{x}, \mathbf{f}\rangle>0\right\} \cup\{0\}, \mathbf{1}\right) .
$$

where $\mathbf{f}=\left(\alpha, \alpha^{2}, \alpha^{3}\right)$.

- So the two subshifts are strong orbit equivalent.

Dendric subshifts

Dendric subshifts

- Recall that for any factor w in the language \mathcal{L}_{X} of (X, T), the extensions of w are the following sets,

$$
\begin{aligned}
& L(w)=\left\{a \in \mathcal{A} \mid a w \in \mathcal{L}_{X}\right\} \\
& R(w)=\left\{a \in \mathcal{A} \mid w a \in \mathcal{L}_{X}\right\} \\
& B(w)=\left\{(a, b) \in \mathcal{A} \times \mathcal{A} \mid a w b \in \mathcal{L}_{X}\right\}
\end{aligned}
$$

Dendric subshifts

- Recall that for any factor w in the language \mathcal{L}_{X} of (X, T), the extensions of w are the following sets,

$$
\begin{aligned}
& L(w)=\left\{a \in \mathcal{A} \mid a w \in \mathcal{L}_{X}\right\} \\
& R(w)=\left\{a \in \mathcal{A} \mid w a \in \mathcal{L}_{X}\right\} \\
& B(w)=\left\{(a, b) \in \mathcal{A} \times \mathcal{A} \mid a w b \in \mathcal{L}_{X}\right\}
\end{aligned}
$$

- Left special factor: $|L(w)| \geq 2$

Right special factor: $|R(w)| \geq 2$
Bispecial factor: $|L(w)|,|R(w)| \geq 2$.

Dendric subshifts

- The extension graph $\mathcal{E}(w)$ of w is the undirected bipartite graph whose set of vertices is the disjoint union of $L(w)$ and $R(w)$ and whose edges are the pairs $(a, b) \in B(w)$.

Dendric subshifts

- The extension graph $\mathcal{E}(w)$ of w is the undirected bipartite graph whose set of vertices is the disjoint union of $L(w)$ and $R(w)$ and whose edges are the pairs $(a, b) \in B(w)$.
- Consider the Thue-Morse word in $\{a, b\}$ given by
$x_{\text {TM }}=a b b a b a a b b a a b a b b a \cdots$
produced by the Thue-Morse
substitution $\sigma: a \mapsto a b, b \mapsto b a$.

Dendric subshifts

- The extension graph $\mathcal{E}(w)$ of w is the undirected bipartite graph whose set of vertices is the disjoint union of $L(w)$ and $R(w)$ and whose edges are the pairs $(a, b) \in B(w)$.
- Consider the Thue-Morse word in $\{a, b\}$ given by
$x_{\text {TM }}=a b b a b a a b b a a b a b b a \cdots$
produced by the Thue-Morse substitution $\sigma: a \mapsto a b, b \mapsto b a$.
- The extension graph of $a b$ is

Dendric subshifts

- Let (X, T) a subshift. If for all $w \in \mathcal{L}_{X}$, the extension graph of w is a tree, (X, T) is called a dendric subshift.

Dendric subshifts

- Let (X, T) a subshift. If for all $w \in \mathcal{L}_{X}$, the extension graph of w is a tree, (X, T) is called a dendric subshift.
- Note that for every non-bispecial factor $w, \mathcal{E}(w)$ is always a tree.

Dendric subshifts

- Let (X, T) a subshift. If for all $w \in \mathcal{L}_{X}$, the extension graph of w is a tree, (X, T) is called a dendric subshift.
- Note that for every non-bispecial factor $w, \mathcal{E}(w)$ is always a tree.
- The subshift generated by the Thue-Morse word

$$
\left\{x \in\{a, b\}^{\mathbb{Z}}: \mathcal{L}(x) \subseteq \mathcal{L}\left(x_{T M}\right)\right\}
$$

is not a dendric subshift.

Dendric subshifts

- Let (X, T) a subshift. If for all $w \in \mathcal{L}_{X}$, the extension graph of w is a tree, (X, T) is called a dendric subshift.
- Note that for every non-bispecial factor $w, \mathcal{E}(w)$ is always a tree.
- The subshift generated by the Thue-Morse word

$$
\left\{x \in\{a, b\}^{\mathbb{Z}}: \mathcal{L}(x) \subseteq \mathcal{L}\left(x_{T M}\right)\right\}
$$

is not a dendric subshift.

- We focus on minimal dendric subshifts.

Dendric words: Sturmian words

- Sturmian words: aperiodic biinfinite words with factor complexity $p_{x}(n)=n+1$. (Codings of irrational rotations on the circle.)

Dendric words: Sturmian words

- Sturmian words: aperiodic biinfinite words with factor complexity $p_{x}(n)=n+1$. (Codings of irrational rotations on the circle.)
- They are defined over a binary alphabet.

Dendric words: Sturmian words

- Sturmian words: aperiodic biinfinite words with factor complexity $p_{x}(n)=n+1$. (Codings of irrational rotations on the circle.)
- They are defined over a binary alphabet.
- One left special factor and one right special factor of each length.

Dendric words: Sturmian words

- Sturmian words: aperiodic biinfinite words with factor complexity $p_{x}(n)=n+1$. (Codings of irrational rotations on the circle.)
- They are defined over a binary alphabet.
- One left special factor and one right special factor of each length.
- A bispecial factor satsfies $\mathcal{E}(w)=\{a \times \mathcal{A}\} \cup\{\mathcal{A} \times b\}$ some $a, b \in \mathcal{A}$.

Dendric subshifts: Arnoux-Rauzy words

- Consider the alphabet $\mathcal{A}=\{1,2, \cdots, d\}, x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is an Arnoux-Rauzy word if it is uniformly recurrent and for each $n \in \mathbb{N}$ there exists exactly
one left special factor of length n with $L(w)=d$, one right special factor of length n with $R(w)=d$.

Dendric subshifts: Arnoux-Rauzy words

- Consider the alphabet $\mathcal{A}=\{1,2, \cdots, d\}, x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is an Arnoux-Rauzy word if it is uniformly recurrent and for each $n \in \mathbb{N}$ there exists exactly
one left special factor of length n with $L(w)=d$, one right special factor of length n with $R(w)=d$.
- The factor complexity is $p_{x}(n)=(d-1) n+1$.

Dendric subshifts: Arnoux-Rauzy words

- Consider the alphabet $\mathcal{A}=\{1,2, \cdots, d\}, x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is an Arnoux-Rauzy word if it is uniformly recurrent and for each $n \in \mathbb{N}$ there exists exactly
one left special factor of length n with $L(w)=d$, one right special factor of length n with $R(w)=d$.
- The factor complexity is $p_{x}(n)=(d-1) n+1$.
- A bispecial factor satsfies $\mathcal{E}(w)=\{a \times \mathcal{A}\} \cup\{\mathcal{A} \times b\}$ some $a, b \in \mathcal{A}$.

Dendric words: Interval exchanges

- Consider a finite alphabet \mathcal{A} and two orders $<_{1}$ and $<_{2}$ in the symbols of \mathcal{A}.

Dendric words: Interval exchanges

- Consider a finite alphabet \mathcal{A} and two orders $<_{1}$ and $<_{2}$ in the symbols of \mathcal{A}.
- Let $\left(I_{a}\right)_{a \in \mathcal{A}}$ a partition of the interval $[0,1)$ in semi-intervals ordered by $<_{1}$.

Dendric words: Interval exchanges

- Consider a finite alphabet \mathcal{A} and two orders $<_{1}$ and $<_{2}$ in the symbols of \mathcal{A}.
- Let $\left(I_{a}\right)_{a \in \mathcal{A}}$ a partition of the interval $[0,1)$ in semi-intervals ordered by $<_{1}$.

- Let λ_{a} be the length of I_{a},

$$
\mu_{a}=\sum_{b \leq_{1 a}} \lambda_{a} \quad \nu_{a}=\sum_{b \leq_{2 a}} \lambda_{b}
$$

Dendric words: Interval exchanges

- Consider a finite alphabet \mathcal{A} and two orders $<_{1}$ and $<_{2}$ in the symbols of \mathcal{A}.
- Let $\left(I_{a}\right)_{a \in \mathcal{A}}$ a partition of the interval $[0,1)$ in semi-intervals ordered by $<_{1}$.

- Let λ_{a} be the length of I_{a},

$$
\mu_{a}=\sum_{b \leq_{1} a} \lambda_{a} \quad \nu_{a}=\sum_{b \leq_{2 a}} \lambda_{b}
$$

- The interval exchange transformation relative to $\left(I_{a}\right)_{a \in \mathcal{A}}$ is the $\operatorname{map} T:[0,1) \rightarrow[0,1)$ given by

$$
T(z)=z+\left(\nu_{a}-\mu_{a}\right) \quad \text { if } \quad z \in I_{a} .
$$

Dendric subshifts: Interval exchanges

- This corresponds to

Dendric subshifts: Interval exchanges

- This corresponds to

\rightsquigarrow Regular means that the orbits of nonzero separation points are infinite and disjoint.

Dendric subshifts: Interval exchanges

- This corresponds to

\rightsquigarrow Regular means that the orbits of nonzero separation points are infinite and disjoint.
- [Keane '75] Regular interval exchanges are minimal.

Dendric subshifts: Interval exchanges

- This corresponds to

\rightsquigarrow Regular means that the orbits of nonzero separation points are infinite and disjoint.
- [Keane '75] Regular interval exchanges are minimal.
- [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone '14] Regular interval exchanges generate dendric subshifts.

Dendric subshifts: Interval exchanges

Binary Sturmian words
AR on d letters.
Exchange of d intervals.

Dendric subshifts: Interval exchanges

Binary Sturmian words

AR on d letters.
Exchange of d intervals.

$$
p(n)=(d-1) n+1=p(n)=(d-1) n+1
$$

Dendric subshifts: Interval exchanges

Binary Sturmian words

AR on d letters. Exchange of d intervals.

$$
p(n)=(d-1) n+1=p(n)=(d-1) n+1
$$

1 right special factor $\neq d-1$ right special factors with d extensions with 2 extensions

Dendric subshifts: Interval exchanges

Binary Sturmian words

AR on d letters. Exchange of d intervals.
$p(n)=(d-1) n+1=p(n)=(d-1) n+1$

1 right special factor $\neq d-1$ right special factors with d extensions with 2 extensions
often balanced \neq often unbalanced

Dendric subshifts: Interval exchanges

Binary Sturmian words

AR on d letters.
Exchange of d intervals.
$p(n)=(d-1) n+1=p(n)=(d-1) n+1$

1 right special factor $\neq d-1$ right special factors with d extensions with 2 extensions

Dimension group of dendric subshifts

Theorem (Berthé, C., Durand, Dolce, Leroy, Perrin, Petite '18)

Let (X, T) be a minimal dendric subshift on a d-letter alphabet. Let $\mathcal{M}(X, T)$ stand for its set of invariant measures. Then, $K^{0}(X, T)$ is isomorphic to

$$
\left(\mathbb{Z}^{d},\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid\left\langle\mathbf{x}, \mathbf{f}_{\mu}\right\rangle>0 \text { for all } \mu \in \mathcal{M}(X, T)\right\} \cup\{\mathbf{0}\}, \mathbf{1}\right),
$$

where $\mathbf{f}_{\mu} \in \mathbb{R}^{d}$ is the letter frequency vector.

Theorem (Berthé, C., Durand, Dolce, Leroy, Perrin, Petite '18)

Let (X, T) be a minimal dendric subshift on a d-letter alphabet. Let $\mathcal{M}(X, T)$ stand for its set of invariant measures. Then, $K^{0}(X, T)$ is isomorphic to

$$
\left(\mathbb{Z}^{d},\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid\left\langle\mathbf{x}, \mathbf{f}_{\mu}\right\rangle>0 \text { for all } \mu \in \mathcal{M}(X, T)\right\} \cup\{\mathbf{0}\}, \mathbf{1}\right),
$$

where $\mathbf{f}_{\mu} \in \mathbb{R}^{d}$ is the letter frequency vector.

Corollary

Two minimal dendric subshifts over the same alphabet are strong orbit equivalent if and only they have the same additive group of letter frequencies.

Return words

- Let $w \in \mathcal{L}_{X}$. A left return word to w is a factor $u \in \mathcal{L}_{X}$ such that $u w \in \mathcal{L}_{X}, w$ is a prefix of $u w$ and $u w$ contains exactly two occurrences of w.

Return words

- Let $w \in \mathcal{L}_{X}$. A left return word to w is a factor $u \in \mathcal{L}_{X}$ such that $u w \in \mathcal{L}_{X}, w$ is a prefix of $u w$ and $u w$ contains exactly two occurrences of w.
- Since (X, T) is minimal, the set $\mathcal{R}_{X}(w)$ of any factor w is finite.

Return words

- Let $w \in \mathcal{L}_{X}$. A left return word to w is a factor $u \in \mathcal{L}_{X}$ such that $u w \in \mathcal{L}_{X}, w$ is a prefix of $u w$ and $u w$ contains exactly two occurrences of w.
- Since (X, T) is minimal, the set $\mathcal{R}_{X}(w)$ of any factor w is finite. Example. Consider the Fibonacci word in $\{a, b\}^{\mathbb{N}}$ given by

$$
x_{F}=\text { abaababaabaababaababaabaa... }
$$

produced by the substitution $\varphi: a \mapsto a b ; b \mapsto a$.

Return words

- Let $w \in \mathcal{L}_{X}$. A left return word to w is a factor $u \in \mathcal{L}_{X}$ such that $u w \in \mathcal{L}_{X}, w$ is a prefix of $u w$ and $u w$ contains exactly two occurrences of w.
- Since (X, T) is minimal, the set $\mathcal{R}_{X}(w)$ of any factor w is finite. Example. Consider the Fibonacci word in $\{a, b\}^{\mathbb{N}}$ given by

$$
x_{F}=\text { abaababaabaababaababaabaa } \cdots
$$

produced by the substitution $\varphi: a \mapsto a b ; b \mapsto a$. The return words to the prefixes of x_{F} are:

$$
\begin{aligned}
\text { return words to } a & =\{a, a b\} . \\
\text { return words to } a b & =\{a b, a b a\} . \\
\text { return words to } a b a & =\{a b, a b a\} .
\end{aligned}
$$

Return words

- Note that $\{a b, a b a\}$ is a basis of the free group F_{2},

$$
\begin{gathered}
a=(a b)^{-1}(a b a) \\
b=a^{-1}(a b)
\end{gathered}
$$

Return words

- Note that $\{a b, a b a\}$ is a basis of the free group F_{2},

$$
\begin{gathered}
a=(a b)^{-1}(a b a) \\
b=a^{-1}(a b) .
\end{gathered}
$$

- This is a general behaviour of dendric subshifts,

Return words

- Note that $\{a b, a b a\}$ is a basis of the free group F_{2},

$$
\begin{gathered}
a=(a b)^{-1}(a b a) \\
b=a^{-1}(a b)
\end{gathered}
$$

- This is a general behaviour of dendric subshifts,

Theorem (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Ridone '15) Let (X, T) a minimal dendric subshift on the alphabet \mathcal{A}. Then for any $w \in \mathcal{L}_{X}$, the set $\mathcal{R}_{X}(w)$ is a basis of the free group on \mathcal{A}.

Partitions in towers

- Let (X, T) be a minimal dendric subshift and take $x \in X$.

Partitions in towers

- Let (X, T) be a minimal dendric subshift and take $x \in X$.
- Denote by $\left\{v_{1}(n), \cdots, v_{d}(n)\right\}$ the set of d return words to $x_{[0, n)}$.

Partitions in towers

- Let (X, T) be a minimal dendric subshift and take $x \in X$.
- Denote by $\left\{v_{1}(n), \cdots, v_{d}(n)\right\}$ the set of d return words to $x_{[0, n)}$.
- Consider the following sequence of partitions in towers of (X, T),

$$
\mathcal{P}_{n}=\left\{T^{j}\left[v_{i}(n) x_{[0, n)}\right]: 1 \leq i \leq d, 0 \leq j<\left|v_{i}(n)\right|\right\}
$$

Partitions in towers

- Let (X, T) be a minimal dendric subshift and take $x \in X$.
- Denote by $\left\{v_{1}(n), \cdots, v_{d}(n)\right\}$ the set of d return words to $x_{[0, n)}$.
- Consider the following sequence of partitions in towers of (X, T),

$$
\mathcal{P}_{n}=\left\{T^{j}\left[v_{i}(n) x_{[0, n)}\right]: 1 \leq i \leq d, 0 \leq j<\left|v_{i}(n)\right|\right\}
$$

$T^{\left\|v_{i}(n)\right\|-1}\left[v_{i}(n) x_{[0, n)}\right]$
$T^{j}\left[v_{i}(n) x_{[0, n)}\right]$
\vdots
$\left[v_{i}(n) x_{[0, n)}\right]$
$\left[v_{i}(n) x_{[0, n)}\right]$
i

Partitions in towers

$$
\mathcal{P}_{n}=\left\{T^{j}\left[v_{i}(n) x_{[0, n)}\right]: 1 \leq i \leq d, 0 \leq j<\left|v_{i}(n)\right|\right\} .
$$

- For every $n \geq 1, \mathcal{P}_{n+1}$ is finer than \mathcal{P}_{n}.

Partitions in towers

$$
\mathcal{P}_{n}=\left\{T^{j}\left[v_{i}(n) x_{[0, n)}\right]: 1 \leq i \leq d, 0 \leq j<\left|v_{i}(n)\right|\right\} .
$$

- For every $n \geq 1, \mathcal{P}_{n+1}$ is finer than \mathcal{P}_{n}.
- $G\left(\mathcal{P}_{n}\right)$: continuous functions $f: B\left(\mathcal{P}_{n}\right) \rightarrow \mathbb{Z}$ which are constant on each base of \mathcal{P}_{n}.

Partitions in towers

$$
\mathcal{P}_{n}=\left\{T^{j}\left[v_{i}(n) x_{[0, n)}\right]: 1 \leq i \leq d, 0 \leq j<\left|v_{i}(n)\right|\right\} .
$$

- For every $n \geq 1, \mathcal{P}_{n+1}$ is finer than \mathcal{P}_{n}.
- $G\left(\mathcal{P}_{n}\right)$: continuous functions $f: B\left(\mathcal{P}_{n}\right) \rightarrow \mathbb{Z}$ which are constant on each base of \mathcal{P}_{n}.
- $G^{+}\left(\mathcal{P}_{n}\right)$: continuous functions $f: B\left(\mathcal{P}_{n}\right) \rightarrow \mathbb{N}$ which are constant on each base of \mathcal{P}_{n}.

Partitions in towers

$$
\mathcal{P}_{n}=\left\{T^{j}\left[v_{i}(n) x_{[0, n)}\right]: 1 \leq i \leq d, 0 \leq j<\left|v_{i}(n)\right|\right\} .
$$

- For every $n \geq 1, \mathcal{P}_{n+1}$ is finer than \mathcal{P}_{n}.
- $G\left(\mathcal{P}_{n}\right)$: continuous functions $f: B\left(\mathcal{P}_{n}\right) \rightarrow \mathbb{Z}$ which are constant on each base of \mathcal{P}_{n}.
- $G^{+}\left(\mathcal{P}_{n}\right)$: continuous functions $f: B\left(\mathcal{P}_{n}\right) \rightarrow \mathbb{N}$ which are constant on each base of \mathcal{P}_{n}.
- $1_{n}: B\left(\mathcal{P}_{n}\right) \rightarrow \mathbb{N}, y \mapsto\left|v_{i}(n)\right|$ if $y \in\left[v_{i}(n) x_{[0, n)}\right]$.

Partitions in towers

$$
\mathcal{P}_{n}=\left\{T^{j}\left[v_{i}(n) x_{[0, n)}\right]: 1 \leq i \leq d, 0 \leq j<\left|v_{i}(n)\right|\right\} .
$$

- For every $n \geq 1, \mathcal{P}_{n+1}$ is finer than \mathcal{P}_{n}.
- $G\left(\mathcal{P}_{n}\right)$: continuous functions $f: B\left(\mathcal{P}_{n}\right) \rightarrow \mathbb{Z}$ which are constant on each base of \mathcal{P}_{n}.
- $G^{+}\left(\mathcal{P}_{n}\right)$: continuous functions $f: B\left(\mathcal{P}_{n}\right) \rightarrow \mathbb{N}$ which are constant on each base of \mathcal{P}_{n}.
- $1_{n}: B\left(\mathcal{P}_{n}\right) \rightarrow \mathbb{N}, y \mapsto\left|v_{i}(n)\right|$ if $y \in\left[v_{i}(n) x_{[0, n)}\right]$.
- For all $n \geq 0$, the triple $\left(G\left(\mathcal{P}_{n}\right), G^{+}\left(\mathcal{P}_{n}\right), 1_{n}\right)$ is an ordered group with unit.

Partitions in towers

- Since $\left|\mathcal{R}_{X}\left(x_{[0, n)}\right)\right|=d$ for all $n \geq 1, G\left(\mathcal{P}_{n}\right) \cong \mathbb{Z}^{d}$.

Partitions in towers

- Since $\left|\mathcal{R}_{X}\left(x_{[0, n)}\right)\right|=d$ for all $n \geq 1, G\left(\mathcal{P}_{n}\right) \cong \mathbb{Z}^{d}$.
- Consider the morphism $I_{n, n+1}: G\left(\mathcal{P}_{n}\right) \rightarrow G\left(\mathcal{P}_{n+1}\right)$ given by its $d \times d$ matrix M_{n},

$$
M_{n}(k, i)=\left|\left\{0 \leq j<\left|v_{k}(n+1)\right|: T^{j}\left[v_{k}(n+1) x_{[0, n+1)}\right] \subseteq\left[v_{i}(n) x_{[0, n)}\right]\right\}\right| .
$$

Partitions in towers

- Since $\left|\mathcal{R}_{X}\left(x_{[0, n)}\right)\right|=d$ for all $n \geq 1, G\left(\mathcal{P}_{n}\right) \cong \mathbb{Z}^{d}$.
- Consider the morphism $I_{n, n+1}: G\left(\mathcal{P}_{n}\right) \rightarrow G\left(\mathcal{P}_{n+1}\right)$ given by its $d \times d$ matrix M_{n},

$$
M_{n}(k, i)=\left|\left\{0 \leq j<\left|v_{k}(n+1)\right|: T^{j}\left[v_{k}(n+1) x_{[0, n+1)}\right] \subseteq\left[v_{i}(n) x_{[0, n)}\right]\right\}\right| .
$$

- This corresponds to

$$
M_{n}(k, i)=\left|v_{k}(n+1)\right|_{v_{i}(n)} .
$$

Partitions in towers

- Since $\left|\mathcal{R}_{X}\left(x_{[0, n)}\right)\right|=d$ for all $n \geq 1, G\left(\mathcal{P}_{n}\right) \cong \mathbb{Z}^{d}$.
- Consider the morphism $I_{n, n+1}: G\left(\mathcal{P}_{n}\right) \rightarrow G\left(\mathcal{P}_{n+1}\right)$ given by its $d \times d$ matrix M_{n},

$$
M_{n}(k, i)=\left|\left\{0 \leq j<\left|v_{k}(n+1)\right|: T^{j}\left[v_{k}(n+1) x_{[0, n+1)}\right] \subseteq\left[v_{i}(n) x_{[0, n)}\right]\right\}\right| .
$$

- This corresponds to

$$
M_{n}(k, i)=\left|v_{k}(n+1)\right|_{v_{i}(n)} .
$$

- Since $\left\{v_{1}(n), \cdots, v_{d}(n)\right\}$ is a basis of the free group F_{d} for all n,

$$
M_{n} \in G L_{d}(\mathbb{Z})
$$

(every $v_{i}(n)$ admits a unique decomposition in terms of $v_{k}(n+1)$'s and their inverses).

Partitions in towers

- This implies that the inductive limit

$$
G_{\mathfrak{C}}=\lim _{M_{n}} G\left(\mathcal{P}_{n}\right)
$$

is isomorphic to \mathbb{Z}^{d}.

Partitions in towers

- This implies that the inductive limit

$$
G_{\mathfrak{S}}=\lim _{M_{n}} G\left(\mathcal{P}_{n}\right)
$$

is isomorphic to \mathbb{Z}^{d}.

- The isomorphism $\varphi: G_{\mathfrak{S}} \rightarrow \mathbb{Z}^{d}$ is given by

$$
\varphi\left[\left(x_{n}\right)_{n \geq 0}\right] \longmapsto\left(M_{k} \cdot M_{k-1} \cdots M_{1} \cdot M_{0}\right)^{-1}\left(x_{k}\right)
$$

where k is any positive integer such that $x_{n+1}=M_{n}\left(x_{n}\right)$ for all $n \geq k$.

Partitions in towers

- This implies that the inductive limit

$$
G_{\mathfrak{S}}=\underset{\overrightarrow{M_{n}}}{\lim } G\left(\mathcal{P}_{n}\right)
$$

is isomorphic to \mathbb{Z}^{d}.

- The isomorphism $\varphi: G_{\mathfrak{G}} \rightarrow \mathbb{Z}^{d}$ is given by

$$
\varphi\left[\left(x_{n}\right)_{n \geq 0}\right] \longmapsto\left(M_{k} \cdot M_{k-1} \cdots M_{1} \cdot M_{0}\right)^{-1}\left(x_{k}\right)
$$

where k is any positive integer such that $x_{n+1}=M_{n}\left(x_{n}\right)$ for all $n \geq k$.

- Note we have added the partition $\mathcal{P}_{0}=\{[a]: a \in \mathcal{A}\}$. The matrix M_{0} whose coefficients are

$$
M_{0}(k, i)=\left|v_{k}(1)\right|_{a}
$$

is invertible.

Dimension group

- On the other hand, [Host] there exists an isomorphism

$$
\pi_{\mathfrak{S}}: G_{\mathfrak{S}} \rightarrow H(X, T)
$$

Dimension group

- On the other hand, [Host] there exists an isomorphism

$$
\pi_{\mathfrak{S}}: G_{\mathfrak{S}} \rightarrow H(X, T)
$$

- In particular, $H(X, T) \cong G_{\mathfrak{S}} \cong \mathbb{Z}^{d}$.

Dimension group

- On the other hand, [Host] there exists an isomorphism

$$
\pi_{\mathfrak{S}}: G_{\mathfrak{S}} \rightarrow H(X, T)
$$

- In particular, $H(X, T) \cong G_{\mathcal{S}} \cong \mathbb{Z}^{d}$.
- The isomorphism $\pi_{\mathfrak{S}}: G_{\mathfrak{S}} \rightarrow H(X, T)$ is in fact an isomorphism of ordered groups with unit

$$
\pi_{\mathfrak{S}}:\left(G_{\mathfrak{S}}, G_{\mathfrak{S}}^{+}, \mathbf{1}_{\mathfrak{S}}\right) \rightarrow K^{0}(X, T)
$$

Dimension group

- On the other hand, [Host] there exists an isomorphism

$$
\pi_{\mathfrak{S}}: G_{\mathfrak{S}} \rightarrow H(X, T)
$$

- In particular, $H(X, T) \cong G_{\mathfrak{S}} \cong \mathbb{Z}^{d}$.
- The isomorphism $\pi_{\mathfrak{S}}: G_{\mathfrak{S}} \rightarrow H(X, T)$ is in fact an isomorphism of ordered groups with unit

$$
\pi_{\mathfrak{S}}:\left(G_{\mathfrak{S}}, G_{\mathfrak{S}}^{+}, \mathbf{1}_{\mathfrak{S}}\right) \rightarrow K^{0}(X, T)
$$

- The isomorphism $\varphi: G_{\mathfrak{S}} \rightarrow \mathbb{Z}^{d}$ verifies

$$
\varphi\left[\left(1_{n}\right)_{n \in \mathbb{N}}\right]=\mathbf{1} \in \mathbb{Z}^{d}
$$

Dimension group

- On the other hand, [Host] there exists an isomorphism

$$
\pi_{\mathfrak{S}}: G_{\mathfrak{S}} \rightarrow H(X, T)
$$

- In particular, $H(X, T) \cong G_{\mathfrak{S}} \cong \mathbb{Z}^{d}$.
- The isomorphism $\pi_{\mathfrak{S}}: G_{\mathfrak{S}} \rightarrow H(X, T)$ is in fact an isomorphism of ordered groups with unit

$$
\pi_{\mathfrak{S}}:\left(G_{\mathfrak{S}}, G_{\mathfrak{S}}^{+}, \mathbf{1}_{\mathfrak{S}}\right) \rightarrow K^{0}(X, T)
$$

- The isomorphism $\varphi: G_{\mathfrak{S}} \rightarrow \mathbb{Z}^{d}$ verifies

$$
\varphi\left[\left(1_{n}\right)_{n \in \mathbb{N}}\right]=\mathbf{1} \in \mathbb{Z}^{d}
$$

- So that

$$
\left(\mathbb{Z}^{d}, ?, \mathbf{1}\right) \xrightarrow{\varphi^{-1}}\left(G_{\mathfrak{S}}, G_{\mathfrak{S}}^{+}, \mathbf{1}_{\mathfrak{S}}\right) \xrightarrow{\pi_{\mathfrak{S}}}\left(H(X, T), H(X, T)^{+}, \mathbf{1}\right)
$$

Dimension group

$$
\left(\mathbb{Z}^{d}, ?, \mathbf{1}\right) \xrightarrow{\varphi^{-1}}\left(G_{\mathfrak{S}}, G_{\mathfrak{E}}^{+}, \mathbf{1}_{\mathfrak{S}}\right) \xrightarrow{\pi_{\mathfrak{E}}}\left(H(X, T), H(X, T)^{+}, \mathbf{1}\right)
$$

- Fact:

$$
H(X, T)^{+}=\pi_{\mathfrak{S}} \circ \varphi^{-1}\left(\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid\left\langle\mathbf{x}, \mathbf{f}_{\mu}\right\rangle>0 \text { for all } \mu \in \mathcal{M}(X, T)\right\} \cup\{0\}\right) .
$$

Dimension group

$$
\left(\mathbb{Z}^{d}, ?, \mathbf{1}\right) \xrightarrow{\varphi^{-1}}\left(G_{\mathfrak{S}}, G_{\mathfrak{E}}^{+}, \mathbf{1}_{\mathfrak{S}}\right) \xrightarrow{\pi_{\mathfrak{G}}}\left(H(X, T), H(X, T)^{+}, \mathbf{1}\right)
$$

- Fact:

$$
H(X, T)^{+}=\pi_{\mathfrak{S}} \circ \varphi^{-1}\left(\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid\left\langle\mathbf{x}, \mathbf{f}_{\mu}\right\rangle>0 \text { for all } \mu \in \mathcal{M}(X, T)\right\} \cup\{0\}\right) .
$$

- To prove the fact, we use two fundamental tools,
(1) [Effros '81] The positive cone $H(X, T)^{+}$is completely determined by invariant measures,

$$
H(X, T)^{+}=\left\{\pi(f) \in H(X, T): \int f d \mu>0 \forall \mu \in \mathcal{M}(X, T)\right\} \cup\left\{0_{H(X, T)}\right\}
$$

(2) Matrices M_{n} are invertible.

