Dimension group of dendric subshifts

Paulina CECCHI B.

(Joint work with Valérie Berthé, F. Dolce, F. Durand, J. Leroy, D. Perrin and S. Petite)

> Institute de Recherche en Informatique Fondamentale Université Paris Diderot - Paris 7

Departamento de Matemática y Ciencia de la Computación Facultad de Ciencia. Universidad de Santiago de Chile

Dyadisc2: Workshop on the spectral analysis of subshifts, Amiens, July 2018

Consider the two following dynamical systems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

Consider the two following dynamical systems

• The subshift generated by the Tribonacci word $\sigma^\infty(1)$ in $\{1,2,3\}^{\mathbb{N}},$ where

$$\sigma: 1 \mapsto 12; 2 \mapsto 13; 3 \mapsto 1$$

Consider the two following dynamical systems

• The subshift generated by the Tribonacci word $\sigma^\infty(1)$ in $\{1,2,3\}^{\mathbb{N}},$ where

$$\sigma: 1 \mapsto 12; 2 \mapsto 13; 3 \mapsto 1$$

Letter frequencies in $\sigma^{\infty}(1)$ are $(\alpha, \alpha^2, \alpha^3)$.

Consider the two following dynamical systems

• The subshift generated by the Tribonacci word $\sigma^\infty(1)$ in $\{1,2,3\}^{\mathbb{N}},$ where

$$\sigma: 1 \mapsto 12; 2 \mapsto 13; 3 \mapsto 1$$

Letter frequencies in $\sigma^{\infty}(1)$ are $(\alpha, \alpha^2, \alpha^3)$.

• The subshift generated by a three-intervale exchange with the same frequencies

Consider the two following dynamical systems

• The subshift generated by the Tribonacci word $\sigma^\infty(1)$ in $\{1,2,3\}^{\mathbb{N}},$ where

$$\sigma: 1 \mapsto 12; 2 \mapsto 13; 3 \mapsto 1$$

Letter frequencies in $\sigma^{\infty}(1)$ are $(\alpha, \alpha^2, \alpha^3)$.

• The subshift generated by a three-intervale exchange with the same frequencies

• In the Tribonacci subshift, there exists a unique infinite word $x_G = x_0 x_1 x_2 \cdots$ with three different pasts: the words

$$y_1 = p_1(x_G) \cdot x_G$$
$$y_2 = p_2(x_G) \cdot x_G$$
$$y_3 = p_3(x_G) \cdot x_G$$

form three proper asympotic pairs, i.e.

$$\lim_{n\to\infty}d(T^n(y_i),T^n(y_j))=0.$$

• In the Tribonacci subshift, there exists a unique infinite word $x_G = x_0 x_1 x_2 \cdots$ with three different pasts: the words

$$y_1 = p_1(x_G) \cdot x_G$$
$$y_2 = p_2(x_G) \cdot x_G$$
$$y_3 = p_3(x_G) \cdot x_G$$

form three proper asympotic pairs, i.e.

$$\lim_{n\to\infty}d(T^n(y_i),T^n(y_j))=0.$$

In the three-interval exchange there are two infinite words x¹_G, x²_G with two different pasts ⇒ two asymptotic pairs.

• In the Tribonacci subshift, there exists a unique infinite word $x_G = x_0 x_1 x_2 \cdots$ with three different pasts: the words

$$y_1 = p_1(x_G) \cdot x_G$$
$$y_2 = p_2(x_G) \cdot x_G$$
$$y_3 = p_3(x_G) \cdot x_G$$

form three proper asympotic pairs, i.e.

$$\lim_{n\to\infty}d(T^n(y_i),T^n(y_j))=0.$$

- In the three-interval exchange there are two infinite words x¹_G, x²_G with two different pasts ⇒ two asymptotic pairs.
- Since proper asymptotic pairs are preserved under conjugacy, both subshifts are not conjugate.

• In the Tribonacci subshift, there exists a unique infinite word $x_G = x_0 x_1 x_2 \cdots$ with three different pasts: the words

$$y_1 = p_1(x_G) \cdot x_G$$
$$y_2 = p_2(x_G) \cdot x_G$$
$$y_3 = p_3(x_G) \cdot x_G$$

form three proper asympotic pairs, i.e.

$$\lim_{n\to\infty}d(T^n(y_i),T^n(y_j))=0.$$

- In the three-interval exchange there are two infinite words x¹_G, x²_G with two different pasts ⇒ two asymptotic pairs.
- Since proper asymptotic pairs are preserved under conjugacy, both subshifts are not conjugate.
- But they are orbit equivalent, they are even strong orbit equivalent.

Paulina CECCHI B. (IRIF/USACh)

- Orbit equivalence and Dimension group of a subshift.
- Dendric subshifts.
- Dimension group of dendric subshifts.

Orbit equivalence and Dimension group

Paulina CECCHI B. (IRIF/USACh)

Dimension group of Dendric subshifts

Dyadisc2, July 2018 5 / 28

Orbit equivalence

Two (topological) dynamical systems (X, T) and (Y, S) are (topological) orbit equivalent if there is a homeomorphism h : X → Y such that for all x ∈ X

$$h(\lbrace T^n(x) : n \in \mathbb{Z} \rbrace) = \lbrace S^n(h(x)) : n \in \mathbb{Z} \rbrace,$$

Orbit equivalence

Two (topological) dynamical systems (X, T) and (Y, S) are (topological) orbit equivalent if there is a homeomorphism h : X → Y such that for all x ∈ X

$$h(\lbrace T^n(x):n\in\mathbb{Z}\rbrace)=\lbrace S^n(h(x)):n\in\mathbb{Z}\rbrace,$$

 If (X, T) and (Y, S) are minimal, there exist a maps n: X → Z (the cocycle map) such that, for all x ∈ X,

$$h \circ T(x) = S^{n(x)} \circ h(x).$$

Orbit equivalence

 Two (topological) dynamical systems (X, T) and (Y, S) are (topological) orbit equivalent if there is a homeomorphism h : X → Y such that for all x ∈ X

$$h({Tn(x): n \in \mathbb{Z}}) = {Sn(h(x)): n \in \mathbb{Z}},$$

 If (X, T) and (Y, S) are minimal, there exist a maps n: X → Z (the cocycle map) such that, for all x ∈ X,

$$h \circ T(x) = S^{n(x)} \circ h(x).$$

• (X, T) and (Y, S) are strong orbit equivalent if n has at most one point of discontinuity.

• Consider $C(X,\mathbb{Z})$ the set of continuous functions from X to \mathbb{Z} , $\beta: C(X,\mathbb{Z}) \to C(X,\mathbb{Z})$ given by

$$\beta f = f \circ T - f.$$

Images of β are called coboundaries.

• Consider $C(X,\mathbb{Z})$ the set of continuous functions from X to \mathbb{Z} , $\beta: C(X,\mathbb{Z}) \to C(X,\mathbb{Z})$ given by

$$\beta f = f \circ T - f.$$

Images of β are called coboundaries.

• Define $H(X, T) := C(X, \mathbb{Z})/\beta C(X, \mathbb{Z}).$

• Consider $C(X,\mathbb{Z})$ the set of continuous functions from X to \mathbb{Z} , $\beta: C(X,\mathbb{Z}) \to C(X,\mathbb{Z})$ given by

$$\beta f = f \circ T - f.$$

Images of β are called coboundaries.

- Define $H(X, T) := C(X, \mathbb{Z})/\beta C(X, \mathbb{Z}).$
- Is is a partially ordered abelian group, whose positive cone is given by

$$H(X, T)^+ = \{ [f] \in H(X, \mathbb{Z}) : f \in C(X, \mathbb{N}) \}.$$
$$] \ge [g] \Leftrightarrow [f] - [g] \in H(X, T)^+).$$

([f

• The class [1] of the constant function 1 is an order unit of H(X, T): for every $[f] \in H(X, T)$, there exists $n \in \mathbb{N}$ such that

 $[f] \leq n[1].$

The class [1] of the constant function 1 is an order unit of H(X, T): for every [f] ∈ H(X, T), there exists n ∈ N such that [f] ≤ n[1].

The triple

$$K^{0}(X, T) = (H(X, T), H(X, T)^{+}, [1])$$

is an ordered group with distinguished unit.

• The class [1] of the constant function 1 is an order unit of H(X, T): for every $[f] \in H(X, T)$, there exists $n \in \mathbb{N}$ such that $[f] \leq n[1]$.

The triple

$$K^{0}(X, T) = (H(X, T), H(X, T)^{+}, [1])$$

is an ordered group with distinguished unit.

Theorem (Giordano–Putnam–Skau '95)

(X, T) and (Y, S) are strong orbit equivalent if an only if

 $K^0(X,T) \cong K^0(Y,S)$

(as ordered group with unit).

Example. The dimension groups associated to the Tribonacci shift and the three-interval exchange with frequencies $(\alpha, \alpha^2, \alpha^3)$ are both

$$\left(\mathbb{Z}^3,\,\{\boldsymbol{x}\in\mathbb{Z}^3\mid\langle\boldsymbol{x},\boldsymbol{f}\rangle>0\}\cup\{\boldsymbol{0}\},\,\boldsymbol{1}\right).$$

where $\mathbf{f} = (\alpha, \alpha^2, \alpha^3)$.

Example. The dimension groups associated to the Tribonacci shift and the three-interval exchange with frequencies $(\alpha, \alpha^2, \alpha^3)$ are both

$$\left(\mathbb{Z}^3,\,\{\textbf{x}\in\mathbb{Z}^3\mid \langle\textbf{x},\textbf{f}\rangle>0\}\cup\{0\},\,\textbf{1}\right).$$

where $\mathbf{f} = (\alpha, \alpha^2, \alpha^3)$.

• So the two subshifts are strong orbit equivalent.

Paulina CECCHI B. (IRIF/USACh)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 - 釣ぬ⊙ Dyadisc2, July 2018

10 / 28

• Recall that for any factor w in the language \mathcal{L}_X of (X, T), the extensions of w are the following sets,

$$L(w) = \{ a \in \mathcal{A} \mid aw \in \mathcal{L}_X \}$$

$$R(w) = \{ a \in \mathcal{A} \mid wa \in \mathcal{L}_X \}$$

$$B(w) = \{ (a, b) \in \mathcal{A} \times \mathcal{A} \mid awb \in \mathcal{L}_X \}.$$

• Recall that for any factor w in the language \mathcal{L}_X of (X, T), the extensions of w are the following sets,

$$L(w) = \{ \mathbf{a} \in \mathcal{A} \mid \mathbf{a} w \in \mathcal{L}_X \}$$

$$R(w) = \{ \mathbf{a} \in \mathcal{A} \mid w \mathbf{a} \in \mathcal{L}_X \}$$

$$B(w) = \{ (\mathbf{a}, \mathbf{b}) \in \mathcal{A} \times \mathcal{A} \mid \mathbf{a} w \mathbf{b} \in \mathcal{L}_X \}.$$

• Left special factor: $|L(w)| \ge 2$ Right special factor: $|R(w)| \ge 2$ Bispecial factor: $|L(w)|, |R(w)| \ge 2$.

• The extension graph $\mathcal{E}(w)$ of w is the undirected bipartite graph whose set of vertices is the disjoint union of L(w) and R(w) and whose edges are the pairs $(a, b) \in B(w)$.

< □ > < 同 > < 回 > < 回 > < 回 > □ = <

- The extension graph $\mathcal{E}(w)$ of w is the undirected bipartite graph whose set of vertices is the disjoint union of L(w) and R(w) and whose edges are the pairs $(a, b) \in B(w)$.
 - Consider the Thue-Morse word in {a, b} given by

 $x_{TM} = abbabaabbaabbaabba \cdots$

produced by the Thue-Morse substitution $\sigma : a \mapsto ab, b \mapsto ba.$

- The extension graph $\mathcal{E}(w)$ of w is the undirected bipartite graph whose set of vertices is the disjoint union of L(w) and R(w) and whose edges are the pairs $(a, b) \in B(w)$.
 - Consider the Thue-Morse word in {a, b} given by

 $x_{TM} = abbabaabbaabbaabba \cdots$

produced by the Thue-Morse substitution $\sigma : a \mapsto ab, b \mapsto ba.$

The extension graph of *ab* is

Let (X, T) a subshift. If for all w ∈ L_X, the extension graph of w is a tree, (X, T) is called a dendric subshift.

- Let (X, T) a subshift. If for all w ∈ L_X, the extension graph of w is a tree, (X, T) is called a dendric subshift.
- Note that for every non-bispecial factor w, $\mathcal{E}(w)$ is always a tree.

- Let (X, T) a subshift. If for all w ∈ L_X, the extension graph of w is a tree, (X, T) is called a dendric subshift.
- Note that for every non-bispecial factor w, $\mathcal{E}(w)$ is always a tree.
- The subshift generated by the Thue-Morse word

$$\{x \in \{a, b\}^{\mathbb{Z}} : \mathcal{L}(x) \subseteq \mathcal{L}(x_{TM})\}$$

is not a dendric subshift.

- Let (X, T) a subshift. If for all w ∈ L_X, the extension graph of w is a tree, (X, T) is called a dendric subshift.
- Note that for every non-bispecial factor w, $\mathcal{E}(w)$ is always a tree.
- The subshift generated by the Thue-Morse word

$$\{x \in \{a, b\}^{\mathbb{Z}} : \mathcal{L}(x) \subseteq \mathcal{L}(x_{TM})\}$$

is not a dendric subshift.

• We focus on minimal dendric subshifts.

米田 トイヨト イヨト 三日

Dendric words: Sturmian words

• Sturmian words: aperiodic biinfinite words with factor complexity $p_x(n) = n + 1$. (Codings of irrational rotations on the circle.)

Dendric words: Sturmian words

- Sturmian words: aperiodic biinfinite words with factor complexity $p_x(n) = n + 1$. (Codings of irrational rotations on the circle.)
- They are defined over a binary alphabet.

Dendric words: Sturmian words

- Sturmian words: aperiodic biinfinite words with factor complexity $p_x(n) = n + 1$. (Codings of irrational rotations on the circle.)
- They are defined over a binary alphabet.
- One left special factor and one right special factor of each length.

Dendric words: Sturmian words

- Sturmian words: aperiodic biinfinite words with factor complexity $p_x(n) = n + 1$. (Codings of irrational rotations on the circle.)
- They are defined over a binary alphabet.
- One left special factor and one right special factor of each length.
- A bispecial factor satsfies E(w) = {a × A} ∪ {A × b} some a, b ∈ A.

(4月) (4日) (4日) 日

Dendric subshifts: Arnoux-Rauzy words

Consider the alphabet A = {1, 2, · · · , d}, x ∈ A^N or A^Z is an Arnoux-Rauzy word if it is uniformly recurrent and for each n ∈ N there exists exactly

one left special factor of length *n* with L(w) = d, one right special factor of length *n* with R(w) = d.

Dendric subshifts: Arnoux-Rauzy words

Consider the alphabet A = {1, 2, · · · , d}, x ∈ A^N or A^Z is an Arnoux-Rauzy word if it is uniformly recurrent and for each n ∈ N there exists exactly

one left special factor of length *n* with L(w) = d, one right special factor of length *n* with R(w) = d.

• The factor complexity is $p_x(n) = (d-1)n + 1$.

Dendric subshifts: Arnoux-Rauzy words

Consider the alphabet A = {1, 2, · · · , d}, x ∈ A^N or A^Z is an Arnoux-Rauzy word if it is uniformly recurrent and for each n ∈ N there exists exactly

one left special factor of length *n* with L(w) = d, one right special factor of length *n* with R(w) = d.

- The factor complexity is $p_x(n) = (d-1)n + 1$.
- A bispecial factor satsfies *E*(*w*) = {*a* × *A*} ∪ {*A* × *b*} some *a*, *b* ∈ *A*.

• Consider a finite alphabet ${\cal A}$ and two orders $<_1$ and $<_2$ in the symbols of ${\cal A}.$

- Consider a finite alphabet ${\cal A}$ and two orders $<_1$ and $<_2$ in the symbols of ${\cal A}.$
- Let (*I_a*)_{*a*∈A} a partition of the interval [0, 1) in semi-intervals ordered by <1.

< **-□** ► <

- Consider a finite alphabet ${\cal A}$ and two orders $<_1$ and $<_2$ in the symbols of ${\cal A}.$
- Let (*I_a*)_{*a*∈A} a partition of the interval [0, 1) in semi-intervals ordered by <1.

• Let λ_a be the length of I_a ,

$$\mu_{\mathbf{a}} = \sum_{\mathbf{b} \leq_1 \mathbf{a}} \lambda_{\mathbf{a}} \quad \nu_{\mathbf{a}} = \sum_{\mathbf{b} \leq_2 \mathbf{a}} \lambda_{\mathbf{b}}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Consider a finite alphabet ${\cal A}$ and two orders $<_1$ and $<_2$ in the symbols of ${\cal A}.$
- Let (*I_a*)_{*a*∈A} a partition of the interval [0, 1) in semi-intervals ordered by <1.

• Let λ_a be the length of I_a ,

$$\mu_{a} = \sum_{b \leq_{1} a} \lambda_{a} \quad \nu_{a} = \sum_{b \leq_{2} a} \lambda_{b}.$$

The interval exchange transformation relative to (I_a)_{a∈A} is the map T : [0,1) → [0,1) given by

$$T(z) = z + (\nu_a - \mu_a)$$
 if $z \in I_a$.

• This corresponds to

Paulina CECCHI B. (IRIF/USACh)

▶ < ∃ > Dyadisc2, July 2018

3

< (T) > < -

17 / 28

→ Regular means that the orbits of nonzero separation points are infinite and disjoint.

- → Regular means that the orbits of nonzero separation points are infinite and disjoint.
 - [Keane '75] Regular interval exchanges are minimal.

- → Regular means that the orbits of nonzero separation points are infinite and disjoint.
 - [Keane '75] Regular interval exchanges are minimal.
 - [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone '14] Regular interval exchanges generate dendric subshifts.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$p(n) = (d-1)n + 1 = p(n) = (d-1)n + 1$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

$$p(n) = (d-1)n + 1 = p(n) = (d-1)n + 1$$

1 right special factor $\neq d - 1$ right special factors with *d* extensions with 2 extensions

$$p(n) = (d-1)n + 1 = p(n) = (d-1)n + 1$$

1 right special factor $\neq d - 1$ right special factors with d extensions with 2 extensions

often balanced \neq often unbalanced

$$p(n) = (d-1)n + 1 = p(n) = (d-1)n + 1$$

1 right special factor $\neq d - 1$ right special factors with d extensions with 2 extensions

often balanced ≠ often unbalanced → Dendric subshifts ←

18 / 28

Dimension group of dendric subshifts

Paulina CECCHI B. (IRIF/USACh)

Dimension group of Dendric subshifts

Dyadisc2, July 2018

19 / 28

Theorem (Berthé, C., Durand, Dolce, Leroy, Perrin, Petite '18)

Let (X, T) be a minimal dendric subshift on a d-letter alphabet. Let $\mathcal{M}(X, T)$ stand for its set of invariant measures. Then, $K^0(X, T)$ is isomorphic to

$$\left(\mathbb{Z}^d,\,\{\mathbf{x}\in\mathbb{Z}^d\mid\langle\mathbf{x},\mathbf{f}_\mu
ight>>0\,\, ext{for all}\,\mu\in\mathcal{M}(X,\,T)\}\cup\{\mathbf{0}\},\,\mathbf{1}
ight),$$

where $\mathbf{f}_{\mu} \in \mathbb{R}^{d}$ is the letter frequency vector.

Theorem (Berthé, C., Durand, Dolce, Leroy, Perrin, Petite '18)

Let (X, T) be a minimal dendric subshift on a d-letter alphabet. Let $\mathcal{M}(X, T)$ stand for its set of invariant measures. Then, $K^0(X, T)$ is isomorphic to

$$\left(\mathbb{Z}^d,\,\{\mathbf{x}\in\mathbb{Z}^d\mid\langle\mathbf{x},\mathbf{f}_\mu
ight>>0\,\, ext{for all}\,\mu\in\mathcal{M}(X,\,T)\}\cup\{\mathbf{0}\},\,\mathbf{1}
ight),$$

where $\mathbf{f}_{\mu} \in \mathbb{R}^{d}$ is the letter frequency vector.

Corollary

Two minimal dendric subshifts over the same alphabet are strong orbit equivalent if and only they have the same additive group of letter frequencies.

• Let $w \in \mathcal{L}_X$. A left return word to w is a factor $u \in \mathcal{L}_X$ such that $uw \in \mathcal{L}_X$, w is a prefix of uw and uw contains exactly two occurrences of w.

- Let $w \in \mathcal{L}_X$. A left return word to w is a factor $u \in \mathcal{L}_X$ such that $uw \in \mathcal{L}_X$, w is a prefix of uw and uw contains exactly two occurrences of w.
- Since (X, T) is minimal, the set $\mathcal{R}_X(w)$ of any factor w is finite.

• Let $w \in \mathcal{L}_X$. A left return word to w is a factor $u \in \mathcal{L}_X$ such that $uw \in \mathcal{L}_X$, w is a prefix of uw and uw contains exactly two occurrences of w.

• Since (X, T) is minimal, the set $\mathcal{R}_X(w)$ of any factor w is finite. Example. Consider the Fibonacci word in $\{a, b\}^{\mathbb{N}}$ given by

 $x_F = abaababaabaabaabaabaabaabaabaa \cdots$

produced by the substitution $\varphi : a \mapsto ab; b \mapsto a$.

• Let $w \in \mathcal{L}_X$. A left return word to w is a factor $u \in \mathcal{L}_X$ such that $uw \in \mathcal{L}_X$, w is a prefix of uw and uw contains exactly two occurrences of w.

Since (X, T) is minimal, the set R_X(w) of any factor w is finite.
 Example. Consider the Fibonacci word in {a, b}^N given by

 $x_F = abaababaabaabaabaabaabaabaa \cdots$

produced by the substitution $\varphi : a \mapsto ab; b \mapsto a$. The return words to the prefixes of x_F are:

> return words to $a = \{a, ab\}$. return words to $ab = \{ab, aba\}$. return words to $aba = \{ab, aba\}$.

• Note that {*ab*, *aba*} is a basis of the free group *F*₂,

$$a = (ab)^{-1}(aba)$$

 $b = a^{-1}(ab).$

• Note that {*ab*, *aba*} is a basis of the free group *F*₂,

$$a=(ab)^{-1}(aba)$$
 $b=a^{-1}(ab).$

• This is a general behaviour of dendric subshifts,

▲ロ▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

• Note that $\{ab, aba\}$ is a basis of the free group F_2 ,

 $a = (ab)^{-1}(aba)$ $b = a^{-1}(ab).$

• This is a general behaviour of dendric subshifts,

Theorem (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Ridone '15) Let (X, T) a minimal dendric subshift on the alphabet A. Then for any $w \in \mathcal{L}_X$, the set $\mathcal{R}_X(w)$ is a basis of the free group on A.

Paulina CECCHI B. (IRIF/USACh)

• Let (X, T) be a minimal dendric subshift and take $x \in X$.

- Let (X, T) be a minimal dendric subshift and take $x \in X$.
- Denote by $\{v_1(n), \cdots, v_d(n)\}$ the set of *d* return words to $x_{[0,n)}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Let (X, T) be a minimal dendric subshift and take $x \in X$.
- Denote by $\{v_1(n), \dots, v_d(n)\}$ the set of *d* return words to $x_{[0,n)}$.
- Consider the following sequence of partitions in towers of (X, T),

 $\mathcal{P}_n = \{ T^j [v_i(n) x_{[0,n)}] : 1 \le i \le d, 0 \le j < |v_i(n)| \}.$

- Let (X, T) be a minimal dendric subshift and take $x \in X$.
- Denote by $\{v_1(n), \dots, v_d(n)\}$ the set of *d* return words to $x_{[0,n)}$.
- Consider the following sequence of partitions in towers of (X, T),

$$\mathcal{P}_n = \{ T^j[v_i(n)x_{[0,n)}] : 1 \le i \le d, 0 \le j < |v_i(n)| \}.$$

$$\mathcal{P}_n = \{ T^j [v_i(n) x_{[0,n)}] : 1 \le i \le d, 0 \le j < |v_i(n)| \}.$$

• For every $n \geq 1$, \mathcal{P}_{n+1} is finer than \mathcal{P}_n .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$\mathcal{P}_n = \{ T^j [v_i(n) x_{[0,n)}] : 1 \le i \le d, 0 \le j < |v_i(n)| \}.$$

- For every $n \ge 1$, \mathcal{P}_{n+1} is finer than \mathcal{P}_n .
- G(P_n) : continuous functions f : B(P_n) → Z which are constant on each base of P_n.

$$\mathcal{P}_n = \{ T^j[v_i(n)x_{[0,n)}] : 1 \le i \le d, 0 \le j < |v_i(n)| \}.$$

- For every $n \ge 1$, \mathcal{P}_{n+1} is finer than \mathcal{P}_n .
- G(P_n) : continuous functions f : B(P_n) → Z which are constant on each base of P_n.
- G⁺(P_n) : continuous functions f : B(P_n) → N which are constant on each base of P_n.

$$\mathcal{P}_n = \{ T^j[v_i(n)x_{[0,n)}] : 1 \le i \le d, 0 \le j < |v_i(n)| \}.$$

• For every $n \ge 1$, \mathcal{P}_{n+1} is finer than \mathcal{P}_n .

- G(P_n) : continuous functions f : B(P_n) → Z which are constant on each base of P_n.
- G⁺(P_n) : continuous functions f : B(P_n) → N which are constant on each base of P_n.

•
$$1_n: B(\mathcal{P}_n) \to \mathbb{N}, y \mapsto |v_i(n)|$$
 if $y \in [v_i(n)x_{[0,n)}]$.

$$\mathcal{P}_n = \{ T^j[v_i(n)x_{[0,n)}] : 1 \le i \le d, 0 \le j < |v_i(n)| \}.$$

• For every $n \ge 1$, \mathcal{P}_{n+1} is finer than \mathcal{P}_n .

- G(P_n) : continuous functions f : B(P_n) → Z which are constant on each base of P_n.
- G⁺(P_n) : continuous functions f : B(P_n) → N which are constant on each base of P_n.
- $1_n : B(\mathcal{P}_n) \to \mathbb{N}, y \mapsto |v_i(n)|$ if $y \in [v_i(n)x_{[0,n)}]$.
- For all $n \ge 0$, the triple $(G(\mathcal{P}_n), G^+(\mathcal{P}_n), 1_n)$ is an ordered group with unit.

• Since
$$|\mathcal{R}_X(x_{[0,n)})| = d$$
 for all $n \ge 1$, $G(\mathcal{P}_n) \cong \mathbb{Z}^d$.

Paulina CECCHI B. (IRIF/USACh)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Since $|\mathcal{R}_X(x_{[0,n)})| = d$ for all $n \ge 1$, $G(\mathcal{P}_n) \cong \mathbb{Z}^d$.
- Consider the morphism $I_{n,n+1}: G(\mathcal{P}_n) \to G(\mathcal{P}_{n+1})$ given by its $d \times d$ matrix M_n ,

 $M_n(k,i) = |\{0 \le j < |v_k(n+1)| : T^j[v_k(n+1)x_{[0,n+1)}] \subseteq [v_i(n)x_{[0,n)}]\}|.$

- Since $|\mathcal{R}_X(x_{[0,n)})| = d$ for all $n \ge 1$, $G(\mathcal{P}_n) \cong \mathbb{Z}^d$.
- Consider the morphism $I_{n,n+1}: G(\mathcal{P}_n) \to G(\mathcal{P}_{n+1})$ given by its $d \times d$ matrix M_n ,

 $M_n(k,i) = |\{0 \le j < |v_k(n+1)| : T^j[v_k(n+1)x_{[0,n+1)}] \subseteq [v_i(n)x_{[0,n)}]\}|.$

• This corresponds to

$$M_n(k,i) = |v_k(n+1)|_{v_i(n)}.$$

- Since $|\mathcal{R}_X(x_{[0,n)})| = d$ for all $n \ge 1$, $G(\mathcal{P}_n) \cong \mathbb{Z}^d$.
- Consider the morphism $I_{n,n+1}: G(\mathcal{P}_n) \to G(\mathcal{P}_{n+1})$ given by its $d \times d$ matrix M_n ,

 $M_n(k,i) = |\{0 \le j < |v_k(n+1)| : T^j[v_k(n+1)x_{[0,n+1)}] \subseteq [v_i(n)x_{[0,n)}]\}|.$

• This corresponds to

$$M_n(k,i) = |v_k(n+1)|_{v_i(n)}.$$

• Since $\{v_1(n), \cdots, v_d(n)\}$ is a basis of the free group F_d for all n, $M_n \in GL_d(\mathbb{Z}),$

(every $v_i(n)$ admits a unique decomposition in terms of $v_k(n+1)$'s and their inverses).

Paulina CECCHI B. (IRIF/USACh) Dimension group

• This implies that the inductive limit

$$G_{\mathfrak{S}} = \varinjlim_{M_n} G(\mathcal{P}_n)$$

is isomorphic to \mathbb{Z}^d .

• This implies that the inductive limit

$$G_{\mathfrak{S}} = \varinjlim_{M_n} G(\mathcal{P}_n)$$

is isomorphic to \mathbb{Z}^d .

 \bullet The isomorphism $\varphi:{\it G}_{\mathfrak{S}}\to \mathbb{Z}^d$ is given by

$$\varphi[(x_n)_{n\geq 0}]\longmapsto (M_k\cdot M_{k-1}\cdots M_1\cdot M_0)^{-1}(x_k)$$

where k is any positive integer such that $x_{n+1} = M_n(x_n)$ for all $n \ge k$.

▲ロ▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

• This implies that the inductive limit

$$G_{\mathfrak{S}} = \varinjlim_{M_n} G(\mathcal{P}_n)$$

is isomorphic to \mathbb{Z}^d .

• The isomorphism $\varphi: \mathcal{G}_{\mathfrak{S}} \to \mathbb{Z}^d$ is given by

$$\varphi[(x_n)_{n\geq 0}]\longmapsto (M_k\cdot M_{k-1}\cdots M_1\cdot M_0)^{-1}(x_k)$$

where k is any positive integer such that $x_{n+1} = M_n(x_n)$ for all n > k.

• Note we have added the partition $\mathcal{P}_0 = \{[a] : a \in \mathcal{A}\}$. The matrix M_0 whose coefficients are

$$M_0(k,i) = |v_k(1)|_a$$

is invertible.

Paulina CECCHI B. (IRIF/USACh)

26 / 28

• On the other hand, [Host] there exists an isomorphism

 $\pi_{\mathfrak{S}}: G_{\mathfrak{S}} \to H(X, T).$

• On the other hand, [Host] there exists an isomorphism

$$\pi_{\mathfrak{S}}: \mathcal{G}_{\mathfrak{S}} \to \mathcal{H}(X, T).$$

• In particular, $H(X, T) \cong G_{\mathfrak{S}} \cong \mathbb{Z}^d$.

• On the other hand, [Host] there exists an isomorphism

$$\pi_{\mathfrak{S}}: \mathcal{G}_{\mathfrak{S}} \to \mathcal{H}(X, T).$$

- In particular, $H(X, T) \cong G_{\mathfrak{S}} \cong \mathbb{Z}^d$.
- The isomorphism $\pi_{\mathfrak{S}} : G_{\mathfrak{S}} \to H(X, T)$ is in fact an isomorphism of ordered groups with unit

$$\pi_{\mathfrak{S}}: (G_{\mathfrak{S}}, G_{\mathfrak{S}}^+, \mathbf{1}_{\mathfrak{S}}) \to K^0(X, T).$$

• On the other hand, [Host] there exists an isomorphism

$$\pi_{\mathfrak{S}}: \mathcal{G}_{\mathfrak{S}} \to \mathcal{H}(X, T).$$

- In particular, $H(X, T) \cong G_{\mathfrak{S}} \cong \mathbb{Z}^d$.
- The isomorphism $\pi_{\mathfrak{S}} : G_{\mathfrak{S}} \to H(X, T)$ is in fact an isomorphism of ordered groups with unit

$$\pi_{\mathfrak{S}}: (G_{\mathfrak{S}}, G_{\mathfrak{S}}^+, \mathbf{1}_{\mathfrak{S}}) \to K^0(X, T).$$

• The isomorphism $\varphi: G_{\mathfrak{S}} \to \mathbb{Z}^d$ verifies $\varphi[(1_n)_{n \in \mathbb{N}}] = \mathbf{1} \in \mathbb{Z}^d.$

• On the other hand, [Host] there exists an isomorphism

$$\pi_{\mathfrak{S}}: \mathcal{G}_{\mathfrak{S}} \to \mathcal{H}(X, T).$$

- In particular, $H(X, T) \cong G_{\mathfrak{S}} \cong \mathbb{Z}^d$.
- The isomorphism $\pi_{\mathfrak{S}} : G_{\mathfrak{S}} \to H(X, T)$ is in fact an isomorphism of ordered groups with unit

$$\pi_{\mathfrak{S}}: (G_{\mathfrak{S}}, G_{\mathfrak{S}}^+, \mathbf{1}_{\mathfrak{S}}) \to K^0(X, T).$$

• The isomorphism $\varphi: G_{\mathfrak{S}} \to \mathbb{Z}^d$ verifies $\varphi[(1_n)_{n \in \mathbb{N}}] = \mathbf{1} \in \mathbb{Z}^d.$

$$(\mathbb{Z}^d, \mathbf{?}, \mathbf{1}) \xrightarrow{\varphi^{-1}} (G_{\mathfrak{S}}, G_{\mathfrak{S}}^+, \mathbf{1}_{\mathfrak{S}}) \xrightarrow{\pi_{\mathfrak{S}}} (H(X, T), H(X, T)^+, \mathbf{1})$$

27 / 28

$$(\mathbb{Z}^d,?,\mathbf{1}) \xrightarrow{\varphi^{-1}} (G_{\mathfrak{S}},G_{\mathfrak{S}}^+,\mathbf{1}_{\mathfrak{S}}) \xrightarrow{\pi_{\mathfrak{S}}} (H(X,T),H(X,T)^+,\mathbf{1})$$

Fact:

 $H(X,T)^+ = \pi_{\mathfrak{S}} \circ \varphi^{-1}(\{\mathbf{x} \in \mathbb{Z}^d \mid \langle \mathbf{x}, \mathbf{f}_{\mu} \rangle > 0 \text{ for all } \mu \in \mathcal{M}(X,T)\} \cup \{0\}).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

$$(\mathbb{Z}^d,?,\mathbf{1}) \xrightarrow{\varphi^{-1}} (G_{\mathfrak{S}},G_{\mathfrak{S}}^+,\mathbf{1}_{\mathfrak{S}}) \xrightarrow{\pi_{\mathfrak{S}}} (H(X,T),H(X,T)^+,\mathbf{1})$$

Fact:

$$H(X,T)^+ = \pi_{\mathfrak{S}} \circ \varphi^{-1}(\{\mathbf{x} \in \mathbb{Z}^d \mid \langle \mathbf{x}, \mathbf{f}_{\mu} \rangle > 0 \text{ for all } \mu \in \mathcal{M}(X,T)\} \cup \{\mathbf{0}\}).$$

To prove the fact, we use two fundamental tools,
 (1) [Effros '81] The positive cone H(X, T)⁺ is completely determined by invariant measures,

$$H(X,T)^{+} = \left\{ \pi(f) \in H(X,T) : \int f d\mu > 0 \forall \mu \in \mathcal{M}(X,T) \right\} \cup \{0_{H(X,T)}\}$$

(2) Matrices M_n are invertible.