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Motivation
Consider the two following dynamical systems

The subshift generated by the Tribonacci word σ∞(1) in
{1, 2, 3}N, where

σ : 1 7→ 12; 2 7→ 13; 3 7→ 1

Letter frequencies in σ∞(1) are (α, α2, α3).

The subshift generated by a three-intervale exchange with the
same frequencies

a b c

I(b) I(c) I(a)

I

How can we compare this two systems?
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Motivation

In the Tribonacci subshift, there exists a unique infinte word
xG = x0x1x2 · · · with three different pasts: the words

y1 = p1(xG ) · xG
y2 = p2(xG ) · xG
y3 = p3(xG ) · xG

form three proper asympotic pairs, i.e.

lim
n→∞

d(T n(yi),T
n(yj)) = 0.

In the three-interval exchange there are two infinite words x1
G , x

2
G

with two different pasts ⇒ two asymptotic pairs.
Since proper asymptotic pairs are preserved under conjugacy,
both subshifts are not conjugate.
But they are orbit equivalent, they are even strong orbit
equivalent.
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Outline

Orbit equivalence and Dimension group of a subshift.

Dendric subshifts.

Dimension group of dendric subshifts.
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Orbit equivalence and
Dimension group
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Orbit equivalence

Two (topological) dynamical systems (X ,T ) and (Y , S) are
(topological) orbit equivalent if there is a homeomorphism
h : X → Y such that for all x ∈ X

h({T n(x) : n ∈ Z}) = {Sn(h(x)) : n ∈ Z},

If (X ,T ) and (Y , S) are minimal, there exist a maps n : X → Z
(the cocycle map) such that, for all x ∈ X ,

h ◦ T (x) = Sn(x) ◦ h(x).

(X ,T ) and (Y , S) are strong orbit equivalent if n has at most
one point of discontinuity.
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Dimension group

Consider C (X ,Z) the set of continuous functions from X to Z,
β : C (X ,Z)→ C (X ,Z) given by

βf = f ◦ T − f .

Images of β are called coboundaries.

Define H(X ,T ) := C (X ,Z)/βC (X ,Z).

Is is a partially ordered abelian group, whose positive cone is
given by

H(X ,T )+ = {[f ] ∈ H(X ,Z) : f ∈ C (X ,N)}.

([f ] ≥ [g ]⇔ [f ]− [g ] ∈ H(X ,T )+).
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Dimension group

The class [1] of the constant function 1 is an order unit of
H(X ,T ): for every [f ] ∈ H(X ,T ), there exists n ∈ N such that

[f ] ≤ n[1].

The triple

K 0(X ,T ) = (H(X ,T ),H(X ,T )+, [1])

is an ordered group with distinguished unit.

Theorem (Giordano–Putnam–Skau ’95)

(X ,T ) and (Y , S) are strong orbit equivalent if an only if

K 0(X ,T ) ∼= K 0(Y , S)

(as ordered group with unit).
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Dimension group

Example. The dimension groups associated to the Tribonacci shift
and the three-interval exchange with frequencies (α, α2, α3) are both(

Z3, {x ∈ Z3 | 〈x, f〉 > 0} ∪ {0}, 1
)
.

where f = (α, α2, α3).

So the two subshifts are strong orbit equivalent.
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Dendric subshifts
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Dendric subshifts

Recall that for any factor w in the language LX of (X ,T ), the
extensions of w are the following sets,

L(w) = {a ∈ A | aw ∈ LX}
R(w) = {a ∈ A | wa ∈ LX}
B(w) = {(a, b) ∈ A×A | awb ∈ LX}.

Left special factor: |L(w)| ≥ 2
Right special factor: |R(w)| ≥ 2
Bispecial factor: |L(w)|, |R(w)| ≥ 2.
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Dendric subshifts

The extension graph E(w) of w is the undirected bipartite graph
whose set of vertices is the disjoint union of L(w) and R(w) and
whose edges are the pairs (a, b) ∈ B(w).

I Consider the Thue-Morse word
in {a, b} given by

xTM = abbabaabbaababba · · ·

produced by the Thue-Morse
substitution
σ : a 7→ ab, b 7→ ba.

I The extension graph of ab is

E(ab)
a

b

a

b
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Dendric subshifts

Let (X ,T ) a subshift. If for all w ∈ LX , the extension graph of
w is a tree, (X ,T ) is called a dendric subshift.

Note that for every non-bispecial factor w , E(w) is always a tree.

The subshift generated by the Thue–Morse word

{x ∈ {a, b}Z : L(x) ⊆ L(xTM)}

is not a dendric subshift.

We focus on minimal dendric subshifts.
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Dendric words: Sturmian words

Sturmian words: aperiodic biinfinite words with factor complexity
px(n) = n + 1. (Codings of irrational rotations on the circle.)

They are defined over a binary alphabet.

One left special factor and one right special factor of each length.

A bispecial factor satsfies E(w) = {a ×A} ∪ {A × b} some
a, b ∈ A.

E(w)
0

1

0

1
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Dendric subshifts: Arnoux–Rauzy words

Consider the alphabet A = {1, 2, · · · , d}, x ∈ AN or AZ is an
Arnoux-Rauzy word if it is uniformly recurrent and for each
n ∈ N there exists exactly

one left special factor of length n with L(w) = d ,
one right special factor of length n with R(w) = d .

The factor complexity is px(n) = (d − 1)n + 1.

A bispecial factor satsfies E(w) = {a ×A} ∪ {A × b} some
a, b ∈ A.

E(w)
a1

a2

ad

a1

a2

ad

...
...

...

...
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Dendric words: Interval exchanges

Consider a finite alphabet A and two orders <1 and <2 in the
symbols of A.

Let (Ia)a∈A a partition of the interval [0, 1) in semi-intervals
ordered by <1.

Ia Ib Ic

Let λa be the length of Ia,

µa =
∑
b≤1a

λa νa =
∑
b≤2a

λb.

The interval exchange transformation relative to (Ia)a∈A is the
map T : [0, 1)→ [0, 1) given by

T (z) = z + (νa − µa) if z ∈ Ia.
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Dendric subshifts: Interval exchanges

This corresponds to
Ia Ib Ic

Jb Jc Ja

T

 Regular means that the orbits of nonzero separation points are
infinite and disjoint.

[Keane ’75] Regular interval exchanges are minimal.

[Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone ’14] Regular
interval exchanges generate dendric subshifts.
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Dendric subshifts: Interval exchanges

Binary Sturmian words

AR on d letters. Exchange of d intervals.

p(n) = (d − 1)n + 1 = p(n) = (d − 1)n + 1

1 right special factor
with d extensions

6=d − 1 right special factors
with 2 extensions

often balanced 6= often unbalanced

Dendric subshifts
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Dimension group of dendric
subshifts
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Theorem (Berthé, C., Durand, Dolce, Leroy, Perrin, Petite ’18)

Let (X ,T ) be a minimal dendric subshift on a d-letter alphabet. Let
M(X ,T ) stand for its set of invariant measures. Then, K 0(X ,T ) is
isomorphic to(

Zd , {x ∈ Zd | 〈x, fµ〉 > 0 for all µ ∈M(X ,T )} ∪ {0}, 1
)
,

where fµ ∈ Rd is the letter frequency vector.

Corollary

Two minimal dendric subshifts over the same alphabet are strong
orbit equivalent if and only they have the same additive group of
letter frequencies.
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Return words

Let w ∈ LX . A left return word to w is a factor u ∈ LX such
that uw ∈ LX , w is a prefix of uw and uw contains exactly two
occurrences of w .

Since (X ,T ) is minimal, the set RX (w) of any factor w is finite.

Example. Consider the Fibonacci word in {a, b}N given by

xF = abaababaabaababaababaabaa · · ·

produced by the substitution ϕ : a 7→ ab; b 7→ a.
The return words to the prefixes of xF are:

return words to a= {a, ab}.
return words to ab= {ab, aba}.
return words to aba= {ab, aba}.

...
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Return words

Note that {ab, aba} is a basis of the free group F2,

a = (ab)−1(aba)

b = a−1(ab).

This is a general behaviour of dendric subshifts,

Theorem (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Ridone ’15)

Let (X ,T ) a minimal dendric subshift on the alphabet A. Then for
any w ∈ LX , the set RX (w) is a basis of the free group on A.
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Partitions in towers

Let (X ,T ) be a minimal dendric subshift and take x ∈ X .

Denote by {v1(n), · · · , vd(n)} the set of d return words to x[0,n).

Consider the following sequence of partitions in towers of (X ,T ),

Pn = {T j [vi(n)x[0,n)] : 1 ≤ i ≤ d , 0 ≤ j < |vi(n)|}.

[v1(n)x[0,n)]

T [v1(n)x[0,n)]

T |v1(n)|−1[v1(n)x[0,n)]

[vi (n)x[0,n)]

T [vi (n)x[0,n)]

T j [vi (n)x[0,n)]

T |vi (n)|−1[vi (n)x[0,n)]

[vd (n)x[0,n)]

T [vd (n)x[0,n)]

T |vd (n)|−1[vd (n)x[0,n)]

1 i d

· · · · · ·
...

...
...

T T
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Partitions in towers

Pn = {T j [vi(n)x[0,n)] : 1 ≤ i ≤ d , 0 ≤ j < |vi(n)|}.

For every n ≥ 1, Pn+1 is finer than Pn.

G (Pn) : continuous functions f : B(Pn)→ Z which are constant
on each base of Pn.

G+(Pn) : continuous functions f : B(Pn)→ N which are
constant on each base of Pn.

1n : B(Pn)→ N, y 7→ |vi(n)| if y ∈ [vi(n)x[0,n)].

For all n ≥ 0, the triple (G (Pn),G+(Pn), 1n) is an ordered group
with unit.
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Partitions in towers

Since |RX (x[0,n))| = d for all n ≥ 1, G (Pn) ∼= Zd .

Consider the morphism In,n+1 : G (Pn)→ G (Pn+1) given by its
d × d matrix Mn,

Mn(k, i) = |{0 ≤ j < |vk(n + 1)| : T j [vk(n + 1)x[0,n+1)] ⊆ [vi (n)x[0,n)]}|.

This corresponds to

Mn(k , i) = |vk(n + 1)|vi (n).

Since {v1(n), · · · , vd(n)} is a basis of the free group Fd for all n,

Mn ∈ GLd(Z),

(every vi(n) admits a unique decomposition in terms of
vk(n + 1)’s and their inverses).
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Partitions in towers

This implies that the inductive limit

GS = lim−→
Mn

G (Pn)

is isomorphic to Zd .

The isomorphism ϕ : GS → Zd is given by

ϕ[(xn)n≥0] 7−→ (Mk ·Mk−1 · · ·M1 ·M0)−1(xk)

where k is any positive integer such that xn+1 = Mn(xn) for all
n ≥ k .

Note we have added the partition P0 = {[a] : a ∈ A}. The
matrix M0 whose coefficients are

M0(k , i) = |vk(1)|a
is invertible.
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Dimension group

On the other hand, [Host] there exists an isomorphism

πS : GS → H(X ,T ).

In particular, H(X ,T ) ∼= GS
∼= Zd .

The isomorphism πS : GS → H(X ,T ) is in fact an isomorphism
of ordered groups with unit

πS : (GS,G
+
S , 1S)→ K 0(X ,T ).

The isomorphism ϕ : GS → Zd verifies

ϕ[(1n)n∈N] = 1 ∈ Zd .

So that

(Zd , ?, 1)
ϕ−1

−→ (GS,G
+
S , 1S)

πS−→ (H(X ,T ),H(X ,T )+, 1)

Paulina CECCHI B. (IRIF/USACh) Dimension group of Dendric subshifts Dyadisc2, July 2018 27 / 28



Dimension group

On the other hand, [Host] there exists an isomorphism

πS : GS → H(X ,T ).

In particular, H(X ,T ) ∼= GS
∼= Zd .

The isomorphism πS : GS → H(X ,T ) is in fact an isomorphism
of ordered groups with unit

πS : (GS,G
+
S , 1S)→ K 0(X ,T ).

The isomorphism ϕ : GS → Zd verifies

ϕ[(1n)n∈N] = 1 ∈ Zd .

So that

(Zd , ?, 1)
ϕ−1

−→ (GS,G
+
S , 1S)

πS−→ (H(X ,T ),H(X ,T )+, 1)

Paulina CECCHI B. (IRIF/USACh) Dimension group of Dendric subshifts Dyadisc2, July 2018 27 / 28



Dimension group

On the other hand, [Host] there exists an isomorphism

πS : GS → H(X ,T ).

In particular, H(X ,T ) ∼= GS
∼= Zd .

The isomorphism πS : GS → H(X ,T ) is in fact an isomorphism
of ordered groups with unit

πS : (GS,G
+
S , 1S)→ K 0(X ,T ).

The isomorphism ϕ : GS → Zd verifies

ϕ[(1n)n∈N] = 1 ∈ Zd .

So that

(Zd , ?, 1)
ϕ−1

−→ (GS,G
+
S , 1S)

πS−→ (H(X ,T ),H(X ,T )+, 1)

Paulina CECCHI B. (IRIF/USACh) Dimension group of Dendric subshifts Dyadisc2, July 2018 27 / 28



Dimension group

On the other hand, [Host] there exists an isomorphism

πS : GS → H(X ,T ).

In particular, H(X ,T ) ∼= GS
∼= Zd .

The isomorphism πS : GS → H(X ,T ) is in fact an isomorphism
of ordered groups with unit

πS : (GS,G
+
S , 1S)→ K 0(X ,T ).

The isomorphism ϕ : GS → Zd verifies

ϕ[(1n)n∈N] = 1 ∈ Zd .

So that

(Zd , ?, 1)
ϕ−1

−→ (GS,G
+
S , 1S)

πS−→ (H(X ,T ),H(X ,T )+, 1)

Paulina CECCHI B. (IRIF/USACh) Dimension group of Dendric subshifts Dyadisc2, July 2018 27 / 28



Dimension group

On the other hand, [Host] there exists an isomorphism

πS : GS → H(X ,T ).

In particular, H(X ,T ) ∼= GS
∼= Zd .

The isomorphism πS : GS → H(X ,T ) is in fact an isomorphism
of ordered groups with unit

πS : (GS,G
+
S , 1S)→ K 0(X ,T ).

The isomorphism ϕ : GS → Zd verifies

ϕ[(1n)n∈N] = 1 ∈ Zd .

So that

(Zd , ?, 1)
ϕ−1

−→ (GS,G
+
S , 1S)

πS−→ (H(X ,T ),H(X ,T )+, 1)

Paulina CECCHI B. (IRIF/USACh) Dimension group of Dendric subshifts Dyadisc2, July 2018 27 / 28



Dimension group

(Zd , ?, 1)
ϕ−1

−→ (GS,G
+
S , 1S)

πS−→ (H(X ,T ),H(X ,T )+, 1)

Fact:

H(X ,T )+ = πS ◦ ϕ−1({x ∈ Zd | 〈x, fµ〉 > 0 for all µ ∈M(X ,T )} ∪ {0}).

To prove the fact, we use two fundamental tools,
(1) [Effros ’81] The positive cone H(X ,T )+ is completely determined by

invariant measures,

H(X ,T )+ =

{
π(f ) ∈ H(X ,T ) :

∫
fdµ > 0∀µ ∈M(X ,T )

}
∪{0H(X ,T )}

(2) Matrices Mn are invertible.

Paulina CECCHI B. (IRIF/USACh) Dimension group of Dendric subshifts Dyadisc2, July 2018 28 / 28



Dimension group

(Zd , ?, 1)
ϕ−1

−→ (GS,G
+
S , 1S)

πS−→ (H(X ,T ),H(X ,T )+, 1)

Fact:

H(X ,T )+ = πS ◦ ϕ−1({x ∈ Zd | 〈x, fµ〉 > 0 for all µ ∈M(X ,T )} ∪ {0}).

To prove the fact, we use two fundamental tools,
(1) [Effros ’81] The positive cone H(X ,T )+ is completely determined by

invariant measures,

H(X ,T )+ =

{
π(f ) ∈ H(X ,T ) :

∫
fdµ > 0∀µ ∈M(X ,T )

}
∪{0H(X ,T )}

(2) Matrices Mn are invertible.

Paulina CECCHI B. (IRIF/USACh) Dimension group of Dendric subshifts Dyadisc2, July 2018 28 / 28


